

TESTING PROTECTION DEVICES WITH INVERTER-BASED RESOURCES

JORDAN BELL

SCHWEITZER ENGINEERING LABORATORIES

INTRODUCTION

Methods for Testing Protection Devices

- Inverter-based resources do not operate like typical generators
- Average or custom-built models (reverse engineered) are good for load flow or control testing, but inadequate for testing protection devices
- Two methods, provided by RTDS, tested
 - UCM model controlled by GTSOC interface
 - UCM model controlled by external control board through GTDI UCM interface
- Tests results compared behavior to equivalent source

SYSTEM MODEL

- Generator equivalent
- GTSOC UCM
- GTDI UCM

GENERATOR EQUIVALENT

GTDI UCM MODEL

INVERTER BOARD INTERFACE

CONTROL INTERFACE

Central Control Board

Digital I/O Boards

Current Measurement Board

- Interfaces with GTAO card
- Measures ac current
- Measures dc current

Pulse Distributor Board

- Interfaces with GTDI card
- Uses UCM GTDI interface
- Fires pulses to UCM

PARAMETERS TO PROGRAM CONTROLLER

eneral Information Parameters Data Logger									
Q Parameter finder									
- Menu	Name	Value	Unit	Minimum					
 Parameters 	G5.1.5-Protect V trigger	Worst		Worst					
Configuration	G5.1.6-Protect V location	Inverter		Inverter					
G1: General	G5.2.1.1-Enable	XX		00					
G3: Limits	G5.2.1.2-Unbalance I	30	%	1					
> G4: Algorithms	G5.2.1.3-Unbalance I min	30	%	0					
> G5: Protections	G5.2.1.4-Delay unbalance I	5	s	1					
> G6: Communications	G5.2.1.5-Unbalance V	25	%	1					
G8: Control	G5.2.1.6-Delay unbalance V	5	S	1					
 G13: Normative 	G5.2.1.7-Module Homopolar I	Disabled	%	Disabled					
> G14: Custom modbus	G5.2.1.8-DU I unbal threshold	25	%	Disabled					

CONTROLLER GENERAL INFORMATION

Communication Connected Date/Time 5/2/2023 1:46:23 PM Status ON Fault NO FLT Warning OVLAC Power (kW) 1024 Selector status On											
Start Stop 🕢 Reset											
General Information Parameters Data Logger											
Solar Inverter Information											
G3.1.1-P limit Discharge 100.00 %	G8.1.1-P control mode Pac	SV3.2.8-Q LV -1 kVAr	SV2.9-DC Voltage bus 1 1179.6 V	SV3.2.1-Grid voltage RS LV 644.9 V	SV1.6.4-Admission T° -31 °C						
G3.1.2-Q limit 100.00 %	SV1.7.1-P control X00	SV3.2.9-S LV 1009 kVA	SV2.13-Dc Voltage extern 1 1194.1 V	SV3.2.2-Grid voltage ST LV 644.1 V	SV1.2.1-Start conditions all Yes						
G3.1.3-P/Q priority Q	G8.1.2-Q control mode Q	SV3.2.10-Cos phi LV 1.000		SV3.2.3-Grid voltage TR LV 644.3 V							
	SV1.7.2-Q control 00X	SV3.2.12-Grid freq 59.976 Hz		SV3.2.4-Grid current I1 LV 918.0 A							
	G8.1.3-Pac reference 100.00 %			SV3.2.5-Grid current I2 LV 918.0 A							
				SV3.2.6-Grid current I3 LV 917.0 A							

Modules Informatio	on														
Module	Status	Ir (A)	Is (A)	It (A)	Idc (A)	Vdc + (V)	Vdc - (V)	Vdc (V)	P (kW)	IGBT max. T (°C)	Tr1 (°C)	Tr2 (°C)	Tr3 (°C)	Ts1 (°C)	Ts2
1	Run	935	932	930	831	58.8	58.7	117.5	13343	212.19	212.19	203.19	203.19	212.19	203

CONTROLLER VERIFICATION

GTAO Outputs

- Set inputs to known nominal values
- Measured voltages at the board
- Adjusted scaling factors appropriately
- Replaced test signals with actual

GTDI UCM

CONTROLLER VERIFICATION

GTDI Inputs

- Ran controller in an open-loop
- Used RTDS-provided firing pulse generator
- Verified signals were getting to control board
- Verified proper phase sequence

SINGLE-LINE-TO-GROUND FAULT PHASE VOLTAGES AND CURRENTS

SINGLE-LINE-TO-GROUND FAULT I1 AND I2 SEQUENCE CURRENT MAGNITUDES

SINGLE-LINE-TO-GROUND FAULT V1 SEQUENCE VOLTAGE MAGNITUDE

PHASE-TO-PHASE FAULT PHASE VOLTAGES AND CURRENTS

PHASE-TO-PHASE FAULT I1 AND I2 SEQUENCE CURRENT MAGNITUDES

PHASE-TO-PHASE FAULT V1 SEQUENCE VOLTAGE MAGNITUDE

THREE-PHASE FAULT PHASE VOLTAGES AND CURRENTS

THREE-PHASE FAULT I1 AND I2 SEQUENCE CURRENT MAGNITUDES

THREE-PHASE FAULT V1 SEQUENCE VOLTAGE MAGNITUDE

CONCLUSION

- Inverter-based resources do not perform the same as conventional sources
- Sequence components, required for relays, behave erratically
- Two methods are available to more accurately reproduce inverter behavior
 - GTSOC UCM
 - GTDI UCM
- Tested applications with manufacturer firmware and settings
 - GTSOC UCM with a datacenter
 - GTDI UCM for an extra-high-voltage (EHV) intertie

