

HIL TESTING OF AUTOMATIC VOLTAGE SETPOINT OPTIMIZER FOR CLUSTER OF WIND FARMS

AKBO RUPASINGHE

TRANSGRID SOLUTIONS INC. WINNIPEG, CANADA

Introduction - TGS

- We are a power systems consulting company based in Winnipeg, Canada.
- 20 years in the industry
- Experts in:
 - HVDC/FACTS
 - Power System Analysis
 - Renewable Energy integration studies
 - PSCAD/RSCAD model development
 - RTDS HIL Testing

Overview

- Cluster of windfarms connected to a 345kV radial backbone
- Wind farms multiple owners, multiple manufaturers, multiple PPCs and EMSs
- Reactive power management criterion is based on tight voltage regulation at the Root Substation at 1.02 pu
- Client Developer of the firmware solution
- Client of the client Transmission owner a utility company in the USA.

WF5

W

Client-Proposed Solution

• Dynamically change the voltage setpoints of all windfarms and the STATCOM, based on their available reactive power capability to achieve 1.02pu at the Root Substation.

HIL Test Requirement

 Prove to the transmission system operator that the proposed solution work through a witnessed FAT

RTDS Test Setup

Hardware Used

- 3 RTDS Racks (PB5) AC system Model
- GTNETx2 Card Communication Between RTDS and RTACS
- 2x SEL-3555 RTACs AVSO primary and secondary controllers
- 2x SEL-3530 RTACs Root substation AVC and Substation-2 AVC
- 1x SEL-3505 RTACs EMS emulator
- HMI Interface

GTNET DNP Configuration

- GTNET card can only act as a DNP slave
- AVSO/AVC RTACs act as:
 - Slave to measurement RTUs
 - Master to WPP PPCs
- The SEL-3505 acted as a master-master intermediary so that all for RTU measurement communication RTDS appear as master to AVSO/AVC and master to GTNET card as well

GTNET-DNP	
GTNET Card # 1 .GTIO Fiber Port 1	
GTNET_DNP1 DNP Slave Adrs: 198	
Number of IP/Port Enabled: 1 Points File (.txt): pointsAVC	
IP/Pot1:10_68_245,200 /19998	
GTNET-DNP	
. GTNET Card #1 .GTIO Fiber Port 2 .	
GTNET_DNP2	
DNP Slave Adrs: 199 Number of IP/Port Enabled: 1	
Points File (.txt): pointsAVSO	
· _ · · · · / ·	
IP/Pot1:10 , 68 , 245,200 /19999	

RSCAD DNP Component

1			y Input O							(Output:	from	RT
2			6 BKR_STA 6 BKR_STA 6 BKR_STA 6 BKR_STA 6 BKR_STA 6 SW_STAT 6 SW_STAT 6 SW_STAT 6 SW_STAT 6 SW_STAT 6 SW_STAT 6 SW_STAT 6 MOD_STA 6 MOD_STA 6 MOD_STA									
3	BI: () WPP	6_BKR_STA	TUS_ES7	211	WPP6_	BKR_ST	ATUS	0			
4	BI: 2	2 WPP	6_BKR_STA	TUS_ES7	212	WPP6_	BKR_ST	ATUS	1			
5	BI: 4	1 WPP	6_BKR_STA	TUS_721	5	WPP6_	BKR_ST	ATUS	2			
6	BI: (5 WPP	6_BKR_STA	TUS_115	0	WPP6_	BKR_ST	ATUS	3			
7	BI:	/ WPP	6_BKR_STA	TUS_125	0	WPP6_	BKR_ST	ATUS	4			
8	BI: 8	8 WPP	6_SW_STAT	us_1151		WPP6_	BKR_ST	ATUS	5			
9	BI: 1	L2 WPP	6_SW_STAT	US_1152		WPP6_	BKR_ST	ATUS	6			
	BI: :	L6 WPP	6_SW_STAT	US_1153		WPP6_	BKR_ST	ATUS	7			
11	BI: 2	20 WPP	6_SW_STAT	US_1251		WPP6_	BKR_ST	ATUS	8			
12	BI: 2	24 WPP	6_SW_STAT	US_1252		WPP6_	BKR_ST	ATUS	9			
13	BI: 2	28 WPP	6_SW_STAT	US_1253		WPP6_	BKR_ST	ATUS	10			
14	BI: 3	32 WPP	6_MOD_STA	TUS_721	5N	WPP6_	BKR_ST	ATUS	11			
15	BI: :	33 WPP	6_MOD_STA	TUS_721	58	WPP6_	BKR_ST	ATUS	12			
16	BI: 3	34 WPP	6_MOD_STA	TUS_719	9	WPP6_	BKR_ST	ATUS	13			
17												
			6_BKR_LOC						0			
19	BI:	3 WPP	6_BKR_LOC	KOUT_ES	7212	WPP6_	BISTAT	US2	1			
	BI: 3	D WPP	6 BKR LOC 6 SW LOCK	KOUT_72	15	WPP6	BISTAT	US2	2			
21	BI: 9	9 WPP	6_SW_LOCK	OUT_115	1	WPP6_	BISTAT	US2	3			
	BI:	LO WPP	6_REMOTE_	STATUS	1151	WPP6_	BISTAT	US2				
23	BI:	L1 WPP	6 UNBALAN	CE_1151	_	WPP6_	BISTAT	US2	5			
24	BI:	L3 WPP	6_SW_LOCK	OUT_115	2	WPP6_	BISTAT	US2	6			
	BI: .	L4 WPP	6_REMOTE_	STATUS	1152	WPP6_	BISTAT	US2	/			
26	BI:	LS WPP	6 UNBALAN	CE_1152		WPP6	BISTAT	US2	8			
	BI: .	L/ WPP	6_SW_LOCK	OUT_115	3	WPP6_	BISTAT	USZ				
28	BI: .	L8 WPP	6 REMOTE	STATUS	1123	WPP6_	BISTAT	USZ	10 11			
29	BI:	L9 WPP	6_UNBALAN 6_SW_LOCK	CE_1153		WPP6_	BISTAT	052	11			
	BILL	CI WPP	6 SW LOCK	OUT 125	1051	WPP6	BISTAT	082				
	BI: 4	22 WPP	6 REMOTE	STATUS	1251	WPP6	BISTAT	052	1.4			
32	DI: 4	23 WPP	6_UNBALAN 6_SW_LOCK	OLT 1201		WPP6_	DISTAT	052	14			
22	DI: 4	CO WPP	6 REMOTE	001_123	1050	WPP6	DISTAT	052	10			
25	DI: A	CO WFF	6 UNBALAN	0E 105	1202	WPP6	DISTAL	052	17			
36	DI: A	C/ WFF	6 SW LOCK	010 1252	2	WDDG	DISIAI	1022	10			
	DI: A	20 WDD	6 REMOTE	001_123 emamue	1052	WDD6	DISIAI	1002	10			
	DT.	21 14700	C TIMPATAN	08 1253		WDDE	DICTO	110.2	20			
	DI.	25 WDD	6 TRI LTC	088 00	D DOG	NEE O	DISIAI	WDDE	20 рте	mamileo	21	
	DT.	26 MDD	6 mpl Imc	- NUTO N	E FOL	C C C D D D	110	WEEG	DI 0	manue2	22	
A1	BT.	30 WFF 37 WDD	6 TR1 LTC 6 TR1 LTC 6 TR1 LTC 6 TR1 LTC 6 TR2 LTC 6 TR2 LTC 6 TR2 LTC 6 TR2 LTC	DEMOTE	TOCI	L SIAI	TTR	WDD6	BIG	TA1082	23	
42	BT	SS WDD	6 TR2 LTC	OFF TR		STTTON	100	WDD6	BIS	TATUS2	24	
43	BT	RG WDD	6 TR2 LTC	AUTO N		C STAT	119	WDD6	BIS	TATUS2	25	
44	BT	10 WPP	6 TR2 LTC	REMOTE	LOCI	AL STA	TUS	WPP6	BTS	TATUS2	26	

Points list for the AVSO RTAC

trans**grid**

HIL Setup

RSCAD Model

AC Network

trans**grid** SOLUTIONS

Only PCC voltage regulation is modelled

- Aggregated model of WF0 is also included
 - O Controls Root Substation voltage with line droop compensation
 - Voltage regulator response time = 40 s

Model

WF5

W

Wind Farm Models

- Each wind farm in the Gen-tie has been modeled as a lumped controlled PQ source (Benchmarked with PSCAD response)
- PQ capability modelled as per Vestas 2.2MW and 2.0MW turbine specification
- For WF5: Assumed capable to maintain +/-0.95 pf.
- Collector system and pad mount transformer impedances are represented by a PI section model.
- MV Capacitor and Reactor banks and their switching logic has been modeled.
- Grid interface transformers have been modeled with the tap changer logic.

Ο

0

0

MV Shunts

MV shunt switching of the Gen-tie facilities are modelled

WF1			WF2
Switch in capacitors at 60% of		0	Switch in capaci
Q at PCC			Q at PCC
Switch off capacitors at 20% of		0	Switch off capac
Q at PCC			Q at PCC
Switch 2 reactors if P less than		0	Switch 1 reactor
60 MW for 3 minutes			60 MW for 3 mir
Switch remaining reactors if P		0	Switch remainin
less them CONNIFerrer	1		

- 0 less than 60 MW for an additional 3 minutes
- When P is above 60 MW for 3 0 minutes switch off one reactor every 3 minutes

2

- itors at 60% of
- citors at 20% of
- or if P less than inutes
- ng reactors if P less than 60 MW for an additional 3 minutes
- When P is above 60 MW for 3 \bigcirc minutes switch off one reactor every 3 minutes

WF3 and WF4

- Switch 2 reactors if P less than \cap 10% for 3 minutes
- Switch remaining reactors if P 0 less than 10% for an additional 3 minutes
- When P is above 10% for 3 \cap minutes switch off one reactor every 3 minutes

RSCAD Runtime

- RSCAD Runtime captures the plots required for offline analysis.
- The runtime has been setup to view voltages, power readings and capacitor/reactor statuses in real time.
- Necessary interventions can be done using the switches, in real time.

Type of Tests

- Power ramp tests
- Root substation voltage step changes
- Facility trip tests
- Line trip tests
- Loss of signal tests
- Continuous operation
- Gen-tie energization
- AVSO primary-secondary change over

со

V_PCC_STAT

1

2

1.018

1.012 V_{STAT} (pu) 1.006

1.000 0.994 0.988 0.982

0.976 0

Continuous Operation Test (8 hours)

125

120

115

200

0

0

Q (MVAr)

Time (h)

4

Time (h)

5

6

7

— Vref_STAT

3

Q (MVAr)

-100

0

2

AVC_MVAr

Q_PCC_filt

2

6

6

6

4

Time (h)

4

Time (h)

Qturb_CapMax

8

8

8

— Qturb_IndMax1

2023 NORTH AMERICAN RTDS APPLICATIONS & TECHNOLOGY CONFERENCE

8

1.040 1.035

1.025 VSTAT

1.020 1.015

1.010 1.005

0

(nd) 1.030 Malfunction of Root_M650_7170 Meter during WF1 ramp up

AVC_MVAr

Time (s)

Power ramp down test (1/2)

Power ramp down test (2/2)

System response to wind-ramp event pre-AVSO implementation

System response to wind-ramp event post-AVSO implementation

- Pandemic! Entire project, including FAT, was carried out remotely
- Remote debugging
- Time constraints Wind Farms were already in operation. The studies portion of the AVSO development was embedded with HIL testing, saving precious time

- Inverter-based resource integration demands for high-level automatic system control to assist with operator task offload and voltage coordination.
- RTDS and field testing provided operators and engineers the confidence that the AVSO would handle unique operating scenarios
- FATs and HIL testing used to require travel, but this FAT was done entirely remotely, with a timely delivery
- RTDS is not only for studying fast transients. It was very useful in this slower voltage control testing
- RTDS studies for slower dynamics can be done without the full manufacturer models. Simple RSCAD models benchmarked with PSCAD models served the purpose.

Thank You

