

Inverter-Based Resources Model Development and Validation Using PSCAD-RTDS Co-Simulation

Zheyuan Cheng, Ph.D. Juergen Holbach, Ph.D. Srinidhi Narayanan Yi Hu, Ph.D.

Presentation Outline

Introduction

RTDS IBR Model Development

RTDS IBR Model Validation

PSCAD-RTDS Co-Simulation Model Validation Results

Conclusion

Introduction

- Data Source
 - PSCAD model with compiled IBR model in the format of DLL (Dynamic link library)
 - Typically, black-box, based on actual inverter controls or real-code

- Challenges
 - Hidden inverter parameters
 - Hidden protection logics, e.g., collector protection and plant protection
 - Third party software may be required package to simulate plant PSCAD model

Overall Workflow

RTDS IBR Model Development

Systematic Model Tuning and Validation

- Quasi-steady-state response matching
 - Focus on filter time constants, PID gains, voltage-dependent current limits, ramp rates, etc.
- Fault transient response matching
 - Focus on HLVRT, fault, protection functions, etc. (red box)
 - Inner loop control and modulation (yellow box)
 - Tripping logic. (purple box)
- System interactions matching
 - Connect to developed IEEE-14 bus systems and focus on internal and external fault responses.

MATLAB parameter estimation tool

IBR Outer Loop Response Matching

IBR Vendor Models Matching - Recap

- 2-step matching process
 - Outer control loop (red)
 - Inputs: Pref, Qref, Vabc
 - Outputs: Id_ref, Iq_ref
 - Inner control loop (yellow)
 - Inputs: Id_ref, Iq_ref, labc, Theta
 - Outputs: IGBT gate drive signals

Low Voltage Ride Through Test

High Voltage Ride Through Test

AB Fault at POI – 100 ms

ABC Fault at POI – 100 ms

Evolving Fault AB-ABC Fault at POI – 200 ms

Evolving Fault ABC-BC Fault at POI – 200 ms

Evolving Fault AB-BC-ABC Fault at POI – 300 ms

Slide 17

Evolving Fault AB-ABC-BC Fault at POI – 300 ms

IBR Outer & Inner Loop Response Matching

IBR Model Development: Inner Control Loop

Reim

Reim

as COS function

DQ0

ALPHA:

VBp

Id PUfilt

- IBR Model
 - Modular format
- New control development
 - Developed an inner loop control

IBR Model Development: power electronics

- New development
 - Included power electronics switches
 - Inverter output filter
 - GSU transformer with scaling factor

IBR Model Development: System integration

- New development
 - IEEE 14 bus integration Bus 5

Task 3 Progress Review and Discussion – Matching Models on PSCAD and RTDS

- Build PSCAD model from scratch based on original IEEE 14 bus data
 - PSCAD library does not have the same components as RSCAD library – causes model matching challenges.

Source Model Differences between PSCAD and RSCAD

RA

Dynamic PQ and PV sources in PSCAD

Thr

- No limits on the fault current magnitudes
- PI controller becomes unstable when fault stays on for a long time

Configuration		🔠 2↓ 🕾 📑 🛷 🥨			
internal impedance Source Control Internal Output Variables PowerFlow	~	General			
		Base MVA (3-phase)	100.0 [MVA]		
		Base Voltage (L-L, RMS)	230.0 [kV]		
		Base Frequency	60.0 [Hz]		
		Voltage Input Time Constant	0.05 [s]		
	~	Automatic Power Control			
		Enable Automatic Power Control?	Yes		
		Desired Real Power Out	1.0 [pu]		
		Measurement Time Constant	0.02 [s]		
		Controller Time Constant	0.05 [s]		
	~	Automatic Voltage Control			
		Enable Automatic Voltage Control?	Yes		
		Desired Bus Voltage	1.0 [pu]		
		Measurement Voltage Base (L-L, RMS)	230.0 [kV]		
		Measurement Time Constant	0.02 [s]		
		Controller Time Constant	0.05 [s]		
	~	Fixed Control			
		Voltage Magnitude (L-L, RMS)	230.0 [kV]		
		Frequency	60.0 [Hz]		
		Phase	0.0 [deg]		
		Initial Real Power	0.0 [pu]		
		Initial Reactive Power	0.0 [pu]		

- Dynamic PQ and PV sources in RSCAD
 - Controlled current source
 - Uses PLL to track POI voltage

CONFIGURATION	Name	Description	Value	Unit	Min	Max	
CORE ASSIGNMENT	ccType	Control type	P/V control	~			
	ccSigs	Control set points in Runtime or CC?	P/PF control				
PLL PARAMETERS	ccBlk	Turn on/off injections in Runtime or CC?	P/Q control				
CURRENT CONTROL PARAMETERS	Srated	Rated MVA (Base for per unit current control)	Fixed PF	MVA	0.0	1e6	
SIGNAL NAMES	Pinit	Initial real power reference	0	MW	-1e6	1e6	
	Pfinit	Initial power factor reference	1.0		1e-6	1.0	
LOADFLOW RESULTS	Qinit	Initial reactive power reference	12.7309444046012	MVAr	-1e6	1e6	
AUTO-NAMING SETTINGS	Vinit	Initial RMS voltage reference	36.9150	kV	0.0	1еб	
	Pfrefcc	Name for power factor setpoint	PFset6				
	Prefcc	Name for real power setpoint	Pset6	MW			
	Qrefcc	Name for reactive power setpoint	Qset6	MVAr			
	Vrefcc	Name for rms voltage setpoint	Vset6	kV			
	Blkcc	Name for block input (Integer 0 or 1)	srcBlk6				
	RLim	Rate limit for reference signals (+/-)	0.01	per sec	0.0	1e6	
	Tpq	Time constant for loop filters	1e-3	secs			
	Крсс	Proportional gain	0.1				
	Kicc	Integral gain	20				
	Max	Maximum limit	2.0	p.u			
	Min	Minimum limit	-2.0	p.u			

PSCAD-RTDS Co-Simulation Model Validation Results

PSCAD and RSCAD Co-Simulation

- To save time and avoid subtle model differences, the team decided to pursue RSCAD-PSCAD co-simulation approach.
 - Simulate power system and inverter hardware in RSCAD
 - Simulate IBR vendor black box controller in PSCAD
 - UDP interface exchanges analog measurements and control outputs between two platforms.
 - Limitations:
 - Does not support real-time co-simulation
 - RSCAD side only allow control inputs

Co-Simulation Setup

in con

- PSCAD
 - Inverter controller in the loop

Co-Simulation Interface

- RSCAD only has the inverter hardware
 - Controller inputs are sent from PSCAD

Fault Test Cases

- IEEE 14 bus system
 - IBR connected to Bus 5
 - Loc 2 & 5 are internal faults
 - Loc 4 & 6 are external faults

• Fault current at POI: Loc 2 ABC

Fault current at POI: Loc 2 ABG

sec

PÓI

Ϋ́

Ϋ́

 $Y_{\rm Inf.}$ Δ

 (\sim)

Utility

IBR Fault Current Validation

- The overall Mean Absolute Error (MAE) is
 0.0031 kA
- The maximum error is 0.0085 kA

Fault Cases	I0 MAE	I1 MAE	I2 MAE
FLTLOC_2_AB	0.0000	0.0051	0.0026
FLTLOC_2_ABC	0.0000	0.0070	0.0020
FLTLOC_2_ABG	0.0011	0.0053	0.0022
FLTLOC_2_AG	0.0016	0.0056	0.0021
FLTLOC_4_AB	0.0000	0.0049	0.0025
FLTLOC_4_ABC	0.0000	0.0071	0.0023
FLTLOC_4_ABG	0.0017	0.0055	0.0024
FLTLOC_4_AG	0.0015	0.0063	0.0022
FLTLOC_5_AB	0.0000	0.0054	0.0022
FLTLOC_5_ABC	0.0000	0.0085	0.0025
FLTLOC_5_ABG	0.0023	0.0059	0.0025
FLTLOC_5_AG	0.0026	0.0065	0.0023
FLTLOC_6_AB	0.0000	0.0067	0.0019
FLTLOC_6_ABC	0.0000	0.0055	0.0012
FLTLOC_6_ABG	0.0032	0.0049	0.0021
FLTLOC_6_AG	0.0017	0.0070	0.0020

Conclusions

- Best practices in matching black-box vendor models of IBRs in RSCAD
 - Quasi steady-state response matching
 - Focus on filter time constants, PID gains, voltagedependent current limits, ramp rates, etc.
 - Fault transient response matching
 - Focus on HLVRT, protection functions, etc.
 - System interactions matching
 - Connect to developed IEEE-14 bus systems and focus on internal and external fault responses.

- Synchronous generator model parameter estimation tools can be applied for IBR model development.
- PSCAD-RTDS co-simulation feature is a powerful way to perform IBR software controller-in-the-loop simulation.
- IBR model validation can be done accurately using PSCAD-RTDS co-simulation.