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Outline
• Poor man’s DRTS
• A tale of two testbeds

– Power grid testbed
– 5G communication testbed

• Example capabilities
– Control 
– Digital twinning 
– (Black box control)
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POOR MAN’S DRTS
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Poor Man’s DRTS
• A software-based solution for HIL evaluation of the controllers in a 

distribution system (CHIL):
– The power system is represented via a “traditional” simulator.
– The controllers are implemented in physical devices.
– Certain simplifications are made to enable real-time solution.
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A. Mehrizi-Sani, “Establishing a Software-Based Real-Time Simulation Platform for a Controls Laboratory for Training, Research and Development, and 
Experimentation,” PSERC Publication 15-01, Aug. 2015. [Online] https://pserc.wisc.edu/wp-content/uploads/sites/755/2018/08/T-54G_Final-Report_Aug-2015.pdf
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PSCAD-LabVIEW Interface
• Direct (i.e., without MATLAB) PSCAD-LabVIEW interface using a custom 

component (i.e., Fortran code) in PSCAD.
– (This is years before PSCAD had the co-simulation block.)
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Synchronization (1/2)
• The (physical) controller naturally runs 

in real time, but not PSCAD.
• We enforced real-time simulation by

– Making simulation fast: Appropriate 
selection of the power system details, 
simulation time step, plot time step, and the 
rate of data exchange with the controllers.

– Making simulation slow: Slowing down the 
simulation if it runs faster than real time.

• A custom block was developed to 
compare the system time (wall-clock 
time) with the simulation time. It 
compares the times any time data is 
exchanged and if needed, equalizes 
the simulation time with wall clock 
time.
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Synchronization (2/2)
• This is an ad hoc solution but it was sufficient for our application.
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Setup

An NI-cRIO 9024 is used as the external 
controller. It reads two analog signals 
from the simulation file (VC1 and VC2) 
and sends two digital commands to 
switch capacitors on/off back. 
Therefore, one analog input module and 
one digital output module are needed.

• M. Kezunovic, A. Esmaeilian, M. Govindarasu, and A. Mehrizi-Sani, “The use of system in the loop hardware in the loop and co-modeling of cyberphysical systems in developing and 
evaluating smart grid solutions,” in Hawaii Int. Conf. Syst. Sciences (HICSS), Waikoloa, HI, Jan. 2017.

• S. Ziaeinejad and A. Mehrizi-Sani, “Software-based hardware-in-the-loop real-time simulation of distribution systems,” in IEEE Power and Energy Soc. General Meeting (PESGM), 
Boston, MA, Jul. 2016.

Simplified feeder. P and Q are tested against the original 
feeder. 
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Performance Evaluation
• Loads switched on at t = 70 s.

– (a) Voltages of the capacitor buses when 
the external controller does not run and 
both capacitors are off 
(0.0125 pu/div)

– (b) voltages of the capacitor buses when 
the external controller is interfaced to the 
simulation 
(0.0125 pu/div);

– (c) commands of the capacitor switches in 
the presence of the external controller (0 V 
= on; 5 V = off) 
(2 V/div).
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• M. Kezunovic, A. Esmaeilian, M. Govindarasu, and A. Mehrizi-Sani, “The use of system in the loop hardware in the loop and co-modeling of cyberphysical systems in developing and 
evaluating smart grid solutions,” in Hawaii Int. Conf. Syst. Sciences (HICSS), Waikoloa, HI, Jan. 2017.

• S. Ziaeinejad and A. Mehrizi-Sani, “Software-based hardware-in-the-loop real-time simulation of distribution systems,” in IEEE Power and Energy Soc. General Meeting (PESGM), 
Boston, MA, Jul. 2016.
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5G POWER GRID (5GPG) TESTBED
A Tale of Two Testbeds
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The Power Grid Side of the 5GPG Testbed

Equipment acquired through a grant from Virginia’s Commonwealth 
Cyber Initiative (CCI). PB5 is donated by Dominion Energy.



12/25

5G Key Use Scenarios: Slicing
• Expanding research to communication in the power system:

– Distributed algorithms; cybersecurity
• Analogy: virtual machines on a desktop computer
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The 5G Side of the 5GPG Testbed
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Slide Courtesy of Dr. Ying Wang, 2021.
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5G Power Grid Testbed
• Power grid applications (control and protection) + communication + 

cybersecurity assessment and design of cybersecure controllers.
• This testbed is spread over three locations/labs:

– Blacksburg: Microgrid (inverters, controllers, batteries, controllable loads/sources)
– Blacksburg: RTDS units + communication (Modbus, DNP3, and IEC 61850)
– Arlington: 5G testbed

A. Mehrizi-Sani, et al. “Power-Hardware-in-the-Loop Demonstration of Power Systems with 5G Communication,” submitted to SmartGridComm Conf., 2023.
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Locations and Distances
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5G + Power Grid Testbed
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Challenges
• Lack of 5G radio peripherals in the microgrid testbed

– Interfaced through RTDS as proxy devices, in this case an android-based cell phone. 

• Different testbed locations
– Communication over internet and OpenVPN would introduces latencies up to 200 ms!
– Traffic between the two testbeds is routed through a dedicated optical fiber (8 ms).

• Different testbed network domains
– The GTNET cards of the NovaCor rack are assigned private IP addresses by the router 

in their LAN, while the UE is assigned an IP address by an OpenVPN server. Therefore, 
communication between the NovaCor and the UE is not possible through OpenVPN. 
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Challenges
• Lack of application-layer software for NovaCor and the UE

– A TCP/IP client-server is written. The GTNET cards of the NovaCor are set to send and 
receive data as clients using the socket protocol. 

– An Android client program is developed for the UE using the socket library in Java. 
– A multi-connection server program is developed using the socket library in Python to 

enable communication between RTDS and the UE through the dedicated optical fiber 
link. 

– This server is hosted on a Raspberry Pi4 (RPi4) to enable monitoring, control, 
diagnostics, and scalability of the communication link. 

• The total minimum latency for the communication link between the UE 
and RTDS is 28 ms.
– Since RTDS and RPi4 are on the same network and physically close to each other, the 

latency between the two is approximately 0 ms. 
– The minimum latency between the UE and the CCI xG testbed RAN is 20 ms. 
– Using fiber, the connection latency between Arlington and Blacksburg is 8 ms.

• This latency defines the types of applications we can study.



19/25

Upgrading the 5G Side of the 5GPG
• An in-house 5G testbed is under 

development by Wireless@VT, which 
can be used for direct connection 
between devices in the Power Grid 
testbed.

• This 5G testbed provides more 
functionalities than the CCI testbed 
and a lower latency.
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Each IBR uses one GTNET card to 
establish a duplex connection with the 
multi-connection server on RPi4. 

The packet generation frequency of 
each GTNET card is set to 1 kHz.
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Real power of the load at bus 3 increases in a step 
from 1 MW to 2 MW.

A bolted temporary balanced fault occurs at the 
midpoint of line 3–4 and stays for one cycle.



22/25

DIGITAL TWINNING
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Digital Twin of the VT Electric Service
• Peak load: 60 MW
• 3 substations, 26 feeders, 31 

nodes.
• Deployment of DERs to reach 

climate action goal.

• This represents an 
opportunity to develop a 
microgrid-based resilience 
plan for VTES.

Courtesy of Prof. Chen-Ching Liu, Virginia Tech, 2023.



24/25

VTES Digital Twin Architecture
• Components

– Physical system
– Cyber system
– Cyber-power simulation testbed
– Connection
– Real-time data

• Services
– Resilience planning
– Cybersecurity testing
– Decision support

Courtesy of Prof. Chen-Ching Liu, Virginia Tech, 2023.
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