

RTDS & DOBLE ENGINEERING

NESTOR CASILLA & MARCOS VELAZQUEZ
DOBLE ENGINEERING COMPANY





#### **AGENDA**

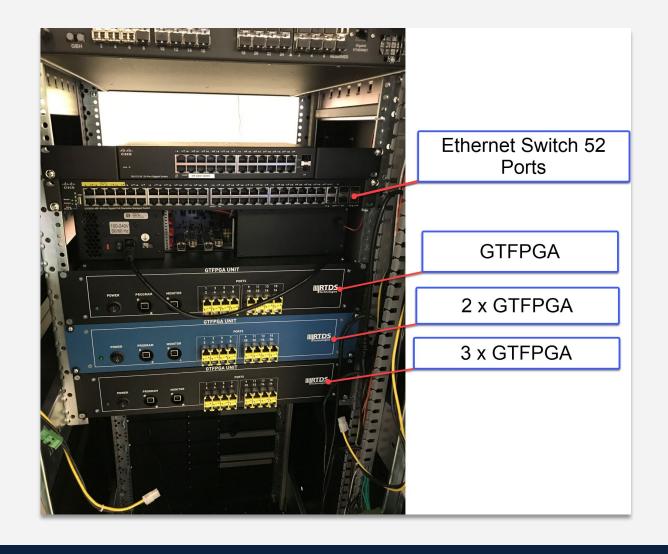
- Introduction
- Doble Engineering's RTDS NovaCor system
- Network architecture
- RTDS in the Network
- Configuration
- Test
- Conclusions



#### INTRODUCTION

- Doble Engineering Company supports its clients in the electric power industry to improve operations and optimize system performance
- Testing protection schemes, evaluating insulation conditions, and assessing risk across your transformer fleet with Doble diagnostic test equipment and software
- Doble offers comprehensive diagnostic equipment and software solutions to verify system protection
- Doble uses an RTDS Novacor System to validate the development of the new test equipment to verify the operation of the new digital substations based on IEC 61850







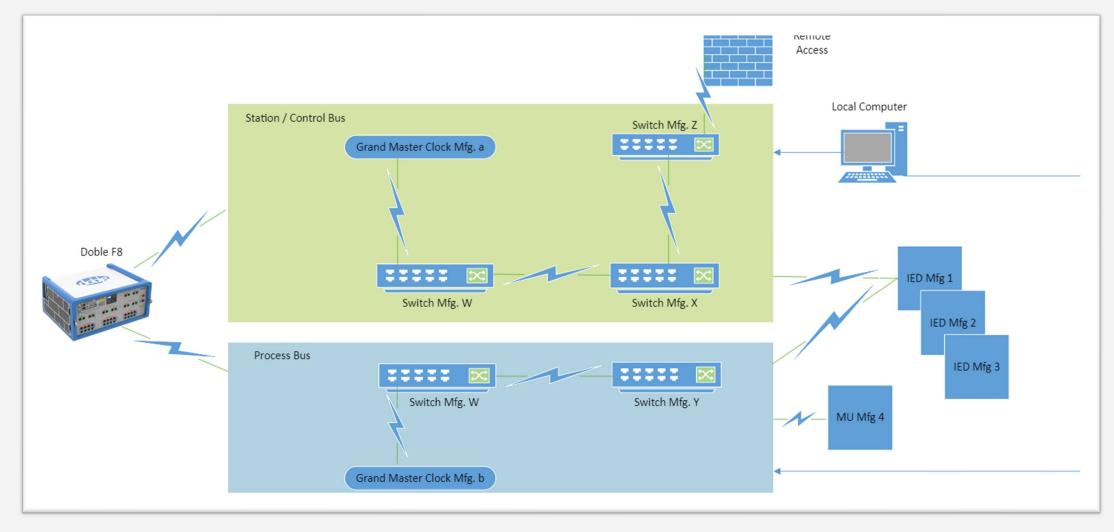

The GTFPGA Unit significantly increases the number of SV data streams that can be input and output from the RTDS Simulator







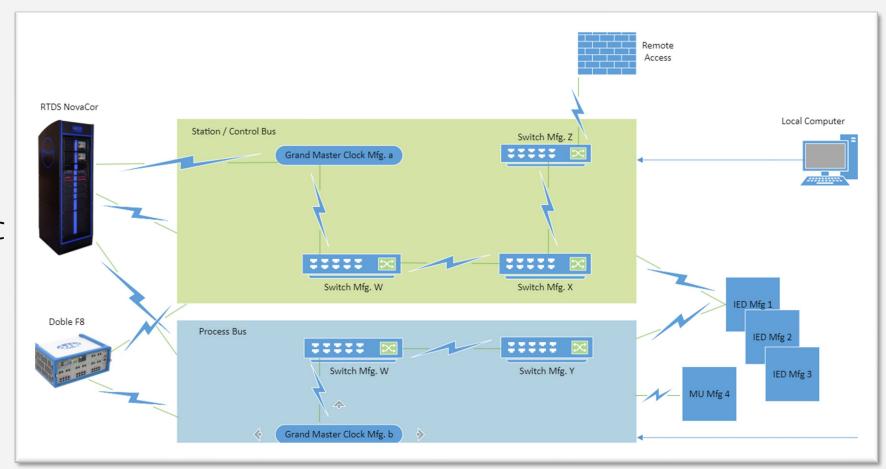



- This configuration allows us to simulate until 48 Sampled Values stream that we use to test our new test devices
- Some Sampled Value parameters can be changed during the simulation, like:
  - Simulation
  - Lost packages
  - Stream manipulation





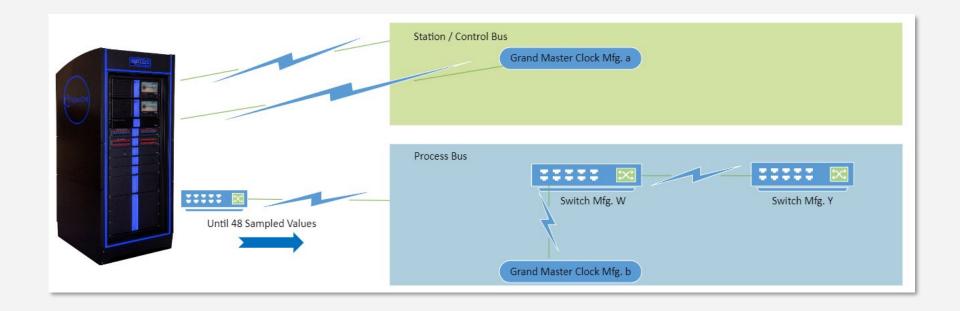



# DOBLE'S PROTECTION LAB NETWORK





# CONNECTION OF THE RTDS IN THE NETWORK


- RTDS has a connection to:
  - Station / Control Bus
  - Process Bus
  - Direct connection to a GMC





# CONNECTION OF THE RTDS IN THE NETWORK

- RTDS is connected to the Process Bus.
- Allowing to send high traffic information into the network, in this scenario, up to 48 SV





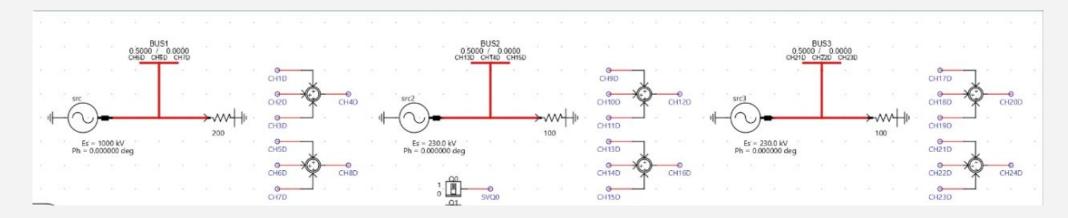
## CONNECTION OF THE RTDS IN THE NETWORK

- From the GMC exist a direct connection to the GTSYNC card
- Confirmation of the LEDs of synchronization

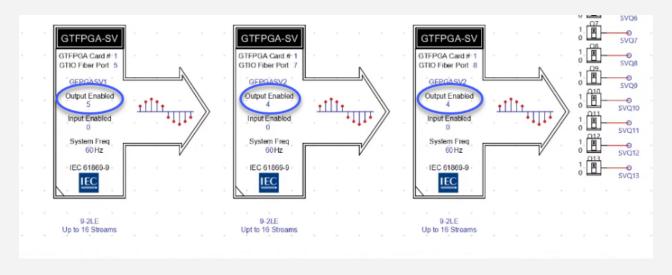






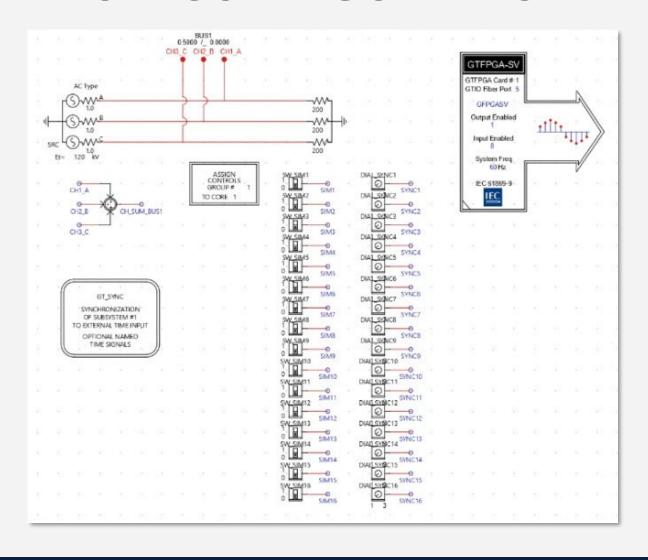

#### CONFIGURATION

 With a Telnet connection, the configuration to have synchronization using Precision Time Protocol (PTP) IEEE 1588


```
PER> 64
Current GTSYNC configuration:
 Ethernet port
                           : Copper RJ45
 IP address
                           : 192,168,7,203
 Subnet mask
                           : 255.255.255.0
 Gateway IP address
                           : 192.168.7.1
 SNTP server IP address
                           : 0.0.0.0
 PTP mode
                           : Slave-only
                           : IEEE C37.238-2011
 PTP profile
 PTP domain
                           : 93
 Holdover mode
                           : Enabled
 Sync mode
                           : IEEE 1588
                           : Enabled
 Transmit VLAN tags
 VLAN ID
 VLAN priority
 Sync correction
 GTSYNC→GTWIF skew
                           : 750
 Override time source
                           : YES
 Advertised time source
                           : PTP
 IRIG-B output time quality override : Disabled
 BNC output format
                           : 1PPS
 Fiber1 output format
                              : 1PPS
 Fiber2 output format
                              : 1PPS
 Fiber3 output format
                              : 1PPS
 Fiber4 output format
                              : 1PPS
```



# RTDS SIMULATION CONFIGURATION




- A simple power system to generate the variables
- Same signal of reference



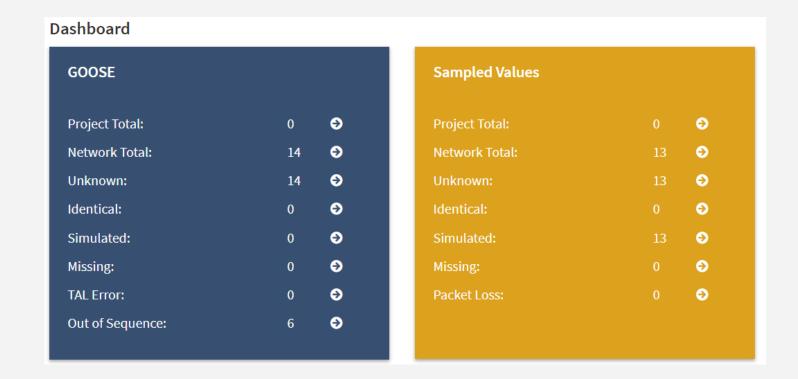


## RTDS SIMULATION CONFIGURATION





## **RUNNING THE SIMULATION WITH 13 SV**


| Normal Traffic Detailed Port Statistics Port | After<br>17 | 2 s With 13 Detailed Port Statistics |          |  |
|----------------------------------------------|-------------|--------------------------------------|----------|--|
| Receive Total                                |             | Receive Total                        |          |  |
| Rx Packets                                   | 198         | Rx Packets                           | 515      |  |
| Rx Octets                                    | 21586       | Rx Octets                            | 39971    |  |
| Rx Unicast                                   | 92          | Rx Unicast                           | 440      |  |
| Rx Multicast                                 | 23          | Rx Multicast                         | 16       |  |
| Rx Broadcast                                 | 83          | Rx Broadcast                         | 59       |  |
| Rx Pause                                     | 0           | Rx Pause                             |          |  |
| Receive Size Counters                        |             | Receive Size C                       | ounters  |  |
| Rx 64 Bytes                                  | 108         | Rx 64 Bytes                          | 452      |  |
| Rx 65-127 Bytes                              | 67          | Rx 65-127 Bytes                      | 45       |  |
| Rx 128-255 Bytes                             | 5           | Rx 128-255 Bytes                     | 3        |  |
| Rx 256-511 Bytes                             | 18          | Rx 256-511 Bytes                     | 13       |  |
| Rx 512-1023 Bytes                            | 0           | Rx 512-1023 Bytes                    |          |  |
| Rx 1024-1526 Bytes                           | 0           | Rx 1024-1526 Bytes                   |          |  |
| Rx 1527- Bytes                               | 0           | Rx 1527- Bytes                       |          |  |
| Receive Queue Counters                       |             | Receive Queue (                      | Counters |  |
| Rx Q0                                        | 198         | Rx Q0                                | 515      |  |
| Rx Q1                                        | 0           | Rx Q1                                |          |  |
| Rx Q2                                        | 0           | Rx Q2                                |          |  |
| Rx Q3                                        | 0           | Rx Q3                                |          |  |
| Rx Q4                                        | 0           | Rx Q4                                |          |  |
| Rx Q5                                        | 0           | Rx Q5                                |          |  |
| Rx Q6                                        | 0           | Rx Q6                                |          |  |
| Rx Q7                                        | 0           | Rx Q7                                |          |  |
| Receive Error Counters                       |             | Receive Error Counters               |          |  |
| Rx Drops                                     | 0           | Rx Drops                             |          |  |
| Rx CRC/Alignment                             | 0           | Rx CRC/Alignment                     |          |  |
| Rx Undersize                                 | 0           | Rx Undersize                         |          |  |
| Rx Oversize                                  | 0           | Rx Oversize                          |          |  |
| Rx Fragments                                 | 0           | Rx Fragments                         |          |  |
| Rx Jabber                                    | 0           | Rx Jabber                            |          |  |
| Rx Filtered                                  | 0           | Rx Filtered                          |          |  |

 Increasing gradually the number of SV in the network to see the performance and monitoring the information

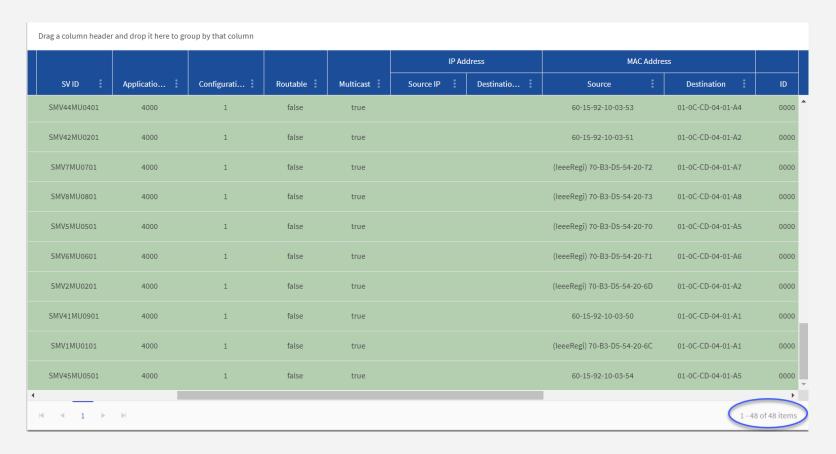


# EVALUATION OF THE DATA IN THE NETWORK USING DOBLE'S TOOLS

 Developing new monitoring technologies can help us verify that the information in the network match with the design and reference files






## **RUNNING THE SIMULATION WITH 48 SV**



 In an Ethernet switch installed in the Process
 Bus, the increase of traffic of packets, also to confirm that does not exist any drops of packages that can compromise the information between devices



# **TEST ANALYSIS**



 Having in the network 48 SV and using a monitoring tool to go through the information and know the details of each SV stream in the network



# **TEST ANALYSIS**

| Drag a column header and drop it here to group by that column. |                                                        |         |             |          |  |  |
|----------------------------------------------------------------|--------------------------------------------------------|---------|-------------|----------|--|--|
| Control Block Reference                                        | GOOSE ID                                               | Applica | Configurati | Routable |  |  |
| UR_T60Master/LLN0\$GO\$GoCB01                                  | TX_TRIP                                                | 0000    | 1           | false    |  |  |
| PROT_1LD0/LLN0\$GO\$GCB_S3_TEST_F                              | PROT_1LD0/LLN0.GCB_S3_TEST_F                           | 0005    | 100         | false    |  |  |
| NE01_0435_08B1_RIO1PLD0/LLN0\$GO\$GCB_CNTRL_RCBA               | NE01_0435_08B1_RIO1PLD0/LLN0.GCB_CNTRL_RCBA            | 0BB9    | 100         | false    |  |  |
| SIEMENS_DOBLE_LABLn1_5051OC3phA1/LLN0\$GO\$Control_DataSet     | SIEMENS_DOBLE_LAB/Ln1_5051OC3phA1/LLN0/Control_DataSet | 0001    | 20001       | false    |  |  |
| SIEMENS_DOBLE_LABApplication/LLN0\$GO\$Control_DataSet         | SIEMENS_DOBLE_LAB/Application/LLN0/Control_DataSet     | 0002    | 10001       | false    |  |  |
| SEL_351_1CFG/LLN0\$GO\$PTOC                                    | SEL_351_1                                              | 0005    | 1           | false    |  |  |
| SEL_351_1CFG/LLN0\$GO\$MMXU                                    | SEL_351_1                                              | 0003    | 1           | false    |  |  |
| PROT_1LD0/LLN0\$GO\$GCB_S3_TEST_I                              | PROT_1LD0/LLN0.GCB_S3_TEST_I                           | 0007    | 100         | false    |  |  |
| SEL_421_4_qaCFG/LLN0\$GO\$GooseDSet15                          | Sub1Bay1                                               | 0005    | 1           | false    |  |  |
| PROT_1LD0/LLN0\$GO\$GCB_S3_TEST_Z                              | PROT_1LD0/LLN0.GCB_S3_TEST_Z                           | 0006    | 100         | false    |  |  |

• Also, the information of GOOSE messages in the network and use it as a trigger condition to monitor the behavior of the IEDs and confirm the correct operation



#### CONCLUSIONS

- The system RTDS NovaCor helps us to create a huge amount of data in the network in less time and with fewer devices
- Having a system RTDS is helping Doble Engineering to have a quick development of solutions for our clients



# **THANK YOU**

#### **Questions?**



