

TOWARDS A LARGE-SCALE MODEL OF THE DOMINION ENERGY TRANSMISSION SYSTEM

ANDREA PINCETI DOMINION ENERGY

OVERVIEW

- Dominion Energy RTDS Laboratory
- The use of RTDS at Dominion
- Towards a complete transmission model
 - Data pipeline
 - Model
- Conclusions

DOMINION ENERGY RTDS LABORATORY

- Lab started in 2012
- Upgraded and relocated over the years
- Recently moved to new purpose-built facility

DOMINION ENERGY RTDS LABORATORY

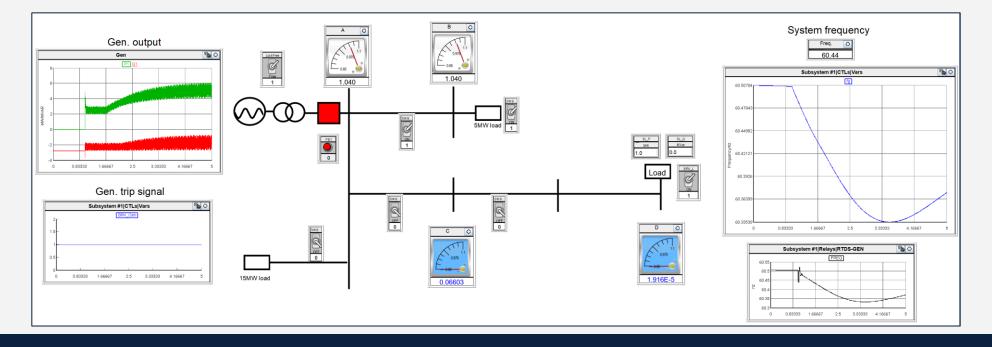
- 4 cubicles
- 10 Novacor racks
- ~85 licensed cores
- Multiple power relays and amplifiers
- FACTS controller replicas
 - STATCOMs
 - SVC
 - Fixed series capacitor
 - More coming soon

PROJECTS AND USE CASE SCENARIOS

- Harmonics and power quality
- FACTS devices
- Root cause analysis
- Blackstart and system restoration
- Protection HIL
- Inverter-based resources

Mobile STACOM

FACTS Controller



PROJECTS AND USE CASE SCENARIOS

Operator training – Frequency response

- System restoration training
- Testing of load pickup capability
- Simulations showing frequency response
- Underfrequency relay tripping
- Comparison between different units

PROJECTS AND USE CASE SCENARIOS

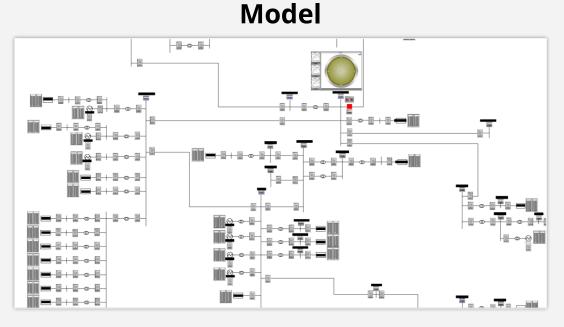
Operator training – Islands synchronization

- Synchronizing two islands is one of the most critical restoration steps
- Operators must match voltages and frequency
- Training is controlled via displays and diagrams familiar to the operators

Island 1		
0.4 (pc) (pc) albuy buy buy 0.1 0.0 0.0	60.065 60.055 (21) 60.045 (21) 60.045 (21) 60.045 60.035 (21) 60.03	
[∞] _{0.0}	60.025 60.02 60.015	
239 238 237	0.4 0.3 0.2	
236 eg 235 ef 235 ef 234 > 233 ef 232 231 230	0.2 (1) 10 0.1 10 0.1 -0.1 -0.2 -0.3	

COMPLETE TRANSMISSION MODEL Overview

- RSCAD model of Dominion's entire Transmission System
- Example use cases:
 - Inverter based resources studying oscillatory and harmonic interactions between PV sites
 - System restoration _____ providing support to operators during Blackstart events

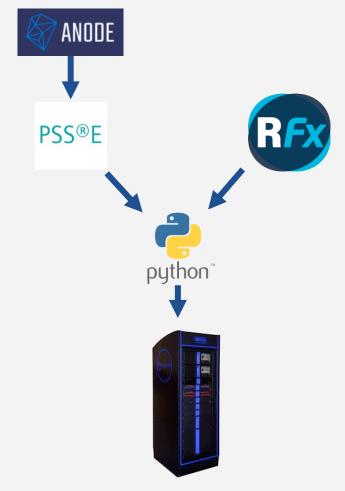

Goal: to address growing challenges by enabling the next generation of power system studies and real-time support

COMPLETE TRANSMISSION MODEL

Two main tasks

Work in progress

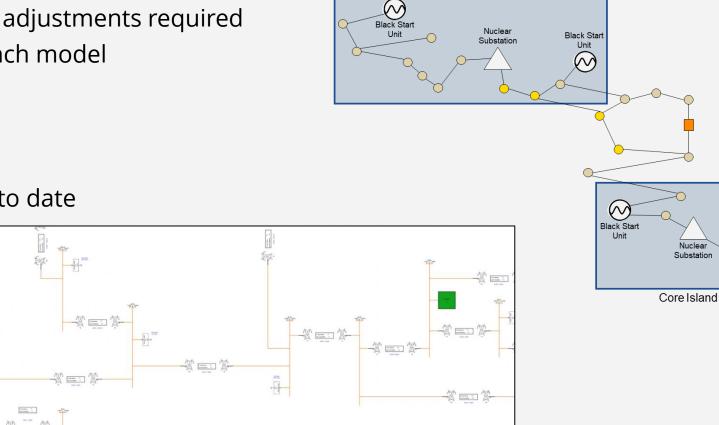
Data


Basic framework has been developed

COMPLETE TRANSMISSION MODEL

EMS data pipeline

- Analysis On Demand (ANODE)
 - Collects EMS data and creates PSSE snapshots
 - PSSE snapshots every 10 minutes
- RSCAD model topology from .inf file
- Parse and compare imported files using python to determine what components to initialize
- Generate RSCAD RunTime script to initialize model
 - Breaker status
 - Generators setpoints
 - Load values



COMPLETE TRANSMISSION MODEL

Building the RSCAD model

Import from PSSE but manual adjustments required

- Node-breaker to bus-branch model
- Laying out draft model
- Creating runtime display •
- Grid is always changing
 - Crucial to keep model up to date

Core Island

Nuclea Substation

 (\mathcal{N}) Black Star Unit

CONCLUSIONS

- Dominion Energy has relied on RTDS for countless projects over the past 10 years
- These successes justified a significant lab upgrade recently
- Improved capabilities will allow for new and larger use cases
- We are working towards a complete model of our system
 - Feedback and suggestions on how to best achieve this are welcome

THANK YOU

