

DEVELOPMENT OF EMT MODELS FOR IBRS IN TRANSMISSION NETWORKS: NYPA EXPERIENCES

VICTOR DALDEGAN PADUANI, THANH NGUYEN, HOSSEIN HOOSHYAR

NEW YORK POWER AUTHORITY

NYPA OVERVIEW - GENERATION ASSETS

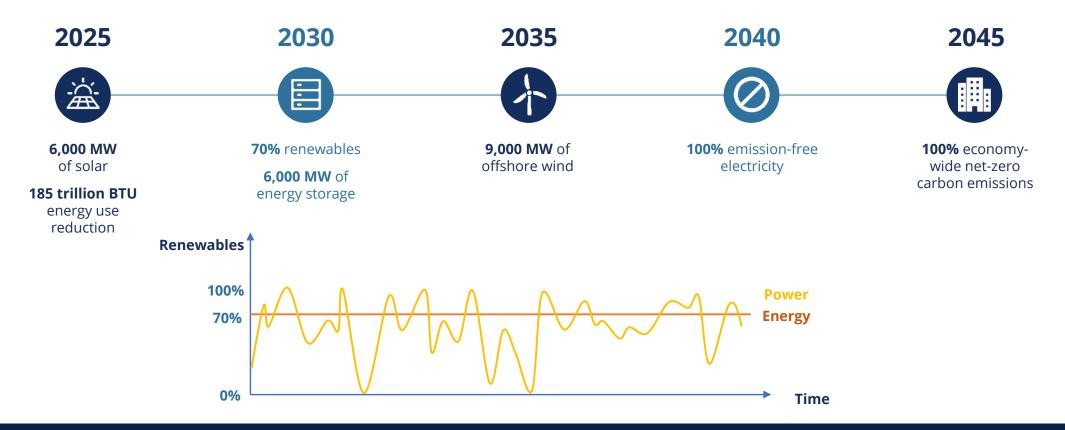
16 hydro and natural gas generation plants (~6GW, 80% hydro and 20% gas):

- Niagara Power Project ~2,675 MW
- St. Lawrence Power Project ~800 MW
- Blenheim-Gilboa ~1,160 MW
- Flynn Power Plant ~167 MW
- Astoria CC Plant ~500 MW
- Small Hydro Plants ~83 MW
- Small Clean Power Plants ~461 MW

NYPA OVERVIEW - TRANSMISSION ASSETS

1400 circuit miles:

- 765 kV ~155 circuit miles
- 345 kV ~928 circuit miles
- 230 kV ~338 circuit miles
- 115 kV ~35 circuit miles
- Substations **21 substation**
- Portion of Bulk NYS Grid


~13% (>115kV) ~34% (>230kV)

NYPA's AGILe

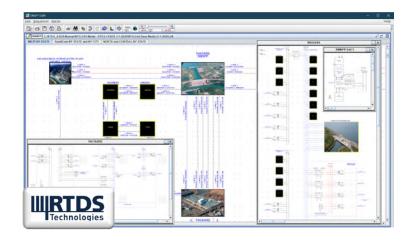
Enabling an Affordable, Reliable, Low-Carbon Future

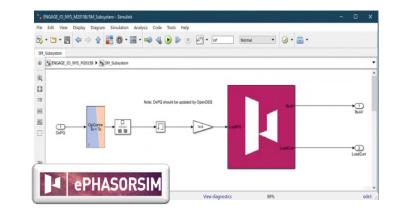
New York's Low- to No-Carbon Future: State Targets

NYPA's AGILe Enabling an Affordable, Reliable, Low-Carbon Future Realistic Testing **EMT/Phasor NYS Grid Model** Simulated in Real-Time B1281 B1285 € 169.8 € 287.1 476.84 88.7 103.0+ 0.643--184.2 81518 B1586 B1282 kt T2 → 3.8 +395.2 4.9 000 395.2 81287 B1283 343.3 + 24.8 + +341.4 Model Validation AGILe +221.6 3.1 -197.6 B1284 **Applied R&D Field** New & Off-The-Shelf Technologies

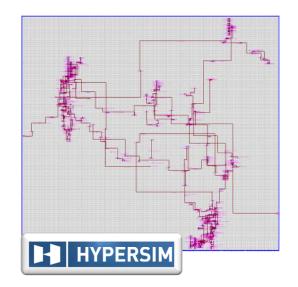
May 23, 2023

Capabilities Outcomes Grid	d Modeling and	-time hardware & C tware in the loop simulation	Communication Network Emulation	Economic Analysis	Application Development	Hardware Testing
Existing Apps CAWE				MTP	MATLAB	DSATools GE-MAPS
Servers Hardware	RTDS	OPAL-RT	TSAT Server	Communicatio Emulator	ns MAPS Server	Work Stations
Hardware Devices	Relays	Intelligent Electronic Devices	Amp	olifier	GPS Clock	Substation Mockup




May 23, 2023

NEW YORK STATE GRID SUITE OF MODELS


• NYS Transmission Grid Model (34.5-765kV) :

- EMT and Phasor Models (~5500 bus)
- Include FACTS and Wind plant models
- Can be used in hybrid EMT-Phasor simulation
- NYS Distribution Grid Models:
 - Selected distribution feeders (up to 20,000 buses)
- NYS Communication Network Models:
 - Substation level communication models

AGILe Use Cases and Applications

Equipment Configuration and Testing

Test equipment in realistic field conditionsValidate the performance of novel technologies

Novel System Protection Schemes

Validate protective relaying behavior and settingsDe-risk novel protection schemes

Digital Substation and IEC 61850

Create replicas of substation intelligent electronic devicesPerform closed-loop testing using communication protocols

Distribution Automation and DERMS

• Simulate the performance of distribution automation system

• Integrate distributed energy resources and storage

Cyber Security

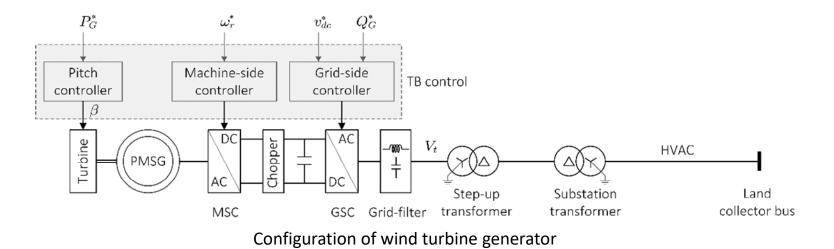
Create testbeds used for tabletop exercises
Evaluate and test intrusion detection and mitigation so

• Evaluate and test intrusion detection and mitigation schemes

DEVELOPMENT OF EMT MODELS OF TYPE 4 WIND TURBINE GENERATORS

Joint research project by Clarkson University and NYPA, funded by NYSERDA.

Smart Power Systems and Controls Lab

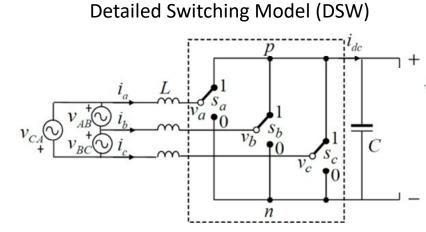

- Develop models of wind turbines and wind power plants.
- Develop HIL-interface to perform real-time co-simulation between RTDS and Opal-RT.
- Study impacts of 9GW offshore wind on NYS power grid.

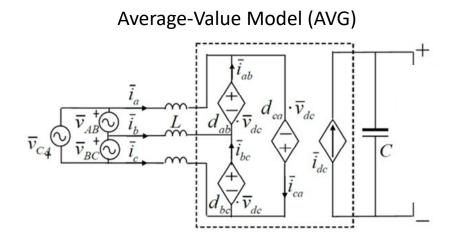
- EMT models of NYS power grid in both RTDS and Opal-RT systems.
- Real-time simulators:
 - RTDS (60 cores): 6 NovaCor Chassis
 - o Opal-RT (40 cores)
- Perform impact studies.

WTG CONTROL SYSTEM

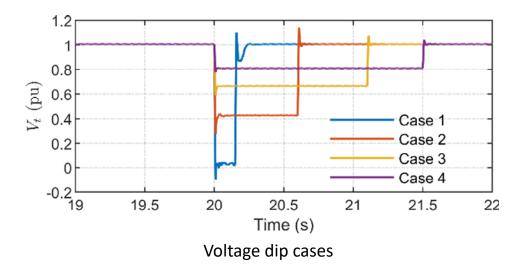
Control functions:

Advanced functions

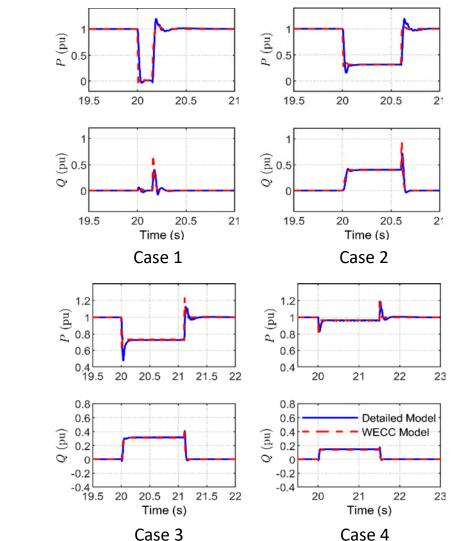

- Power curtailment
- MPPT
- Protection functions


- Low or high voltage ride through
- Negative sequence injection

CONVERTER MODELS

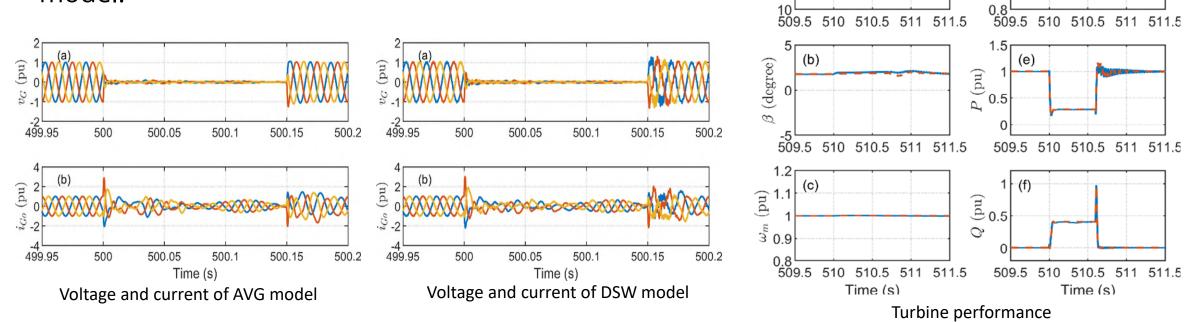


	DSW	AVG
Advantage	• Detailed representation of power electronic converter	Low computational resource
Disadvantage	High computational resource	Lack of high-frequency harmonic representation
Application	 High-frequency harmonic studies Dynamic performance over short periods of time 	 Low-frequency interaction studies (e.g. control interactions) Dynamic performance over long periods of time



TB MODEL VALIDATION

- Validate EMT models against WECC* generic models [1] under 4 cases.
- Performance of proposed and generic WECC models matches well.


[1] W. REMTF, "WECC second generation of wind turbines models guidelines," WECC, USA, 2014. * Western Electricity Coordinating Council

BALANCED FAULT STUDIES

- Three-phase-to-ground fault at grid side is tested.
- AVG model well-captured dynamic response of DSW model.

14

(s/m) ⁿa

(a

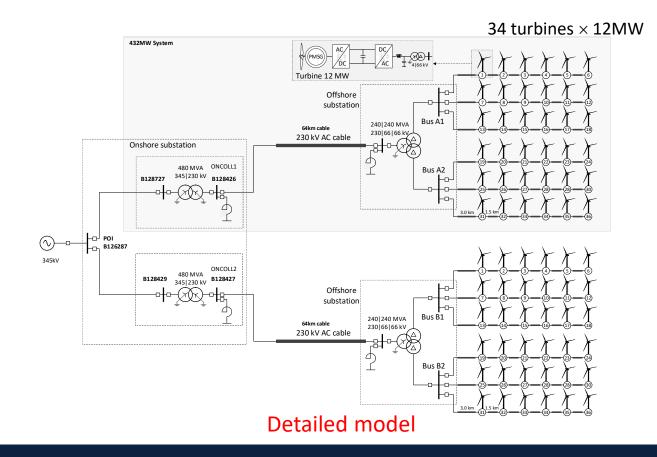
DSW

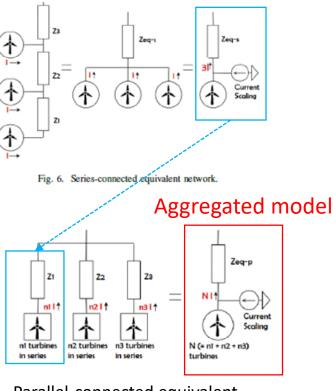
AVĠ

(d)

.2

(nd)

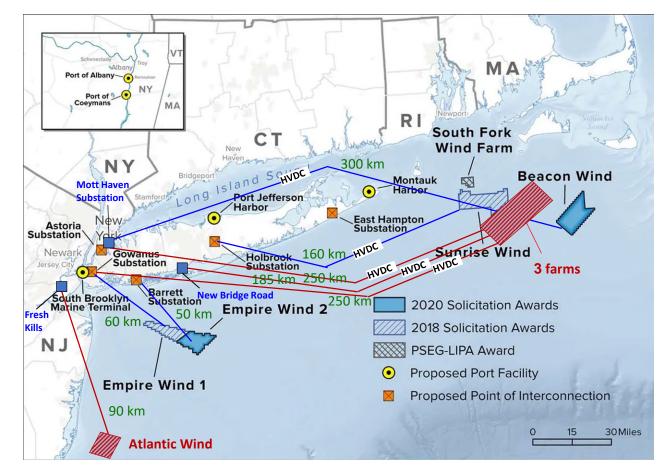

 v_{dc}


May 23, 2023

EMT MODEL OF WIND FARMS

• Two types of WF models: detailed model and aggregated model.

Series-connected equivalent network of each array.

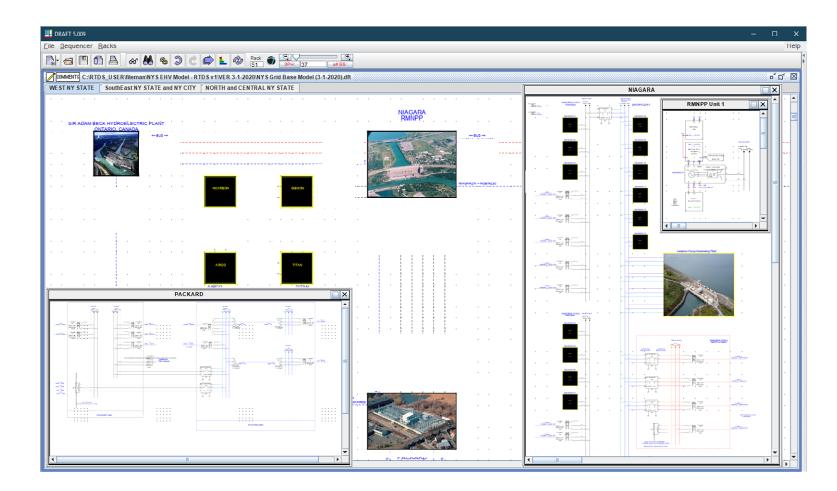


Parallel-connected equivalent network of wind farm.

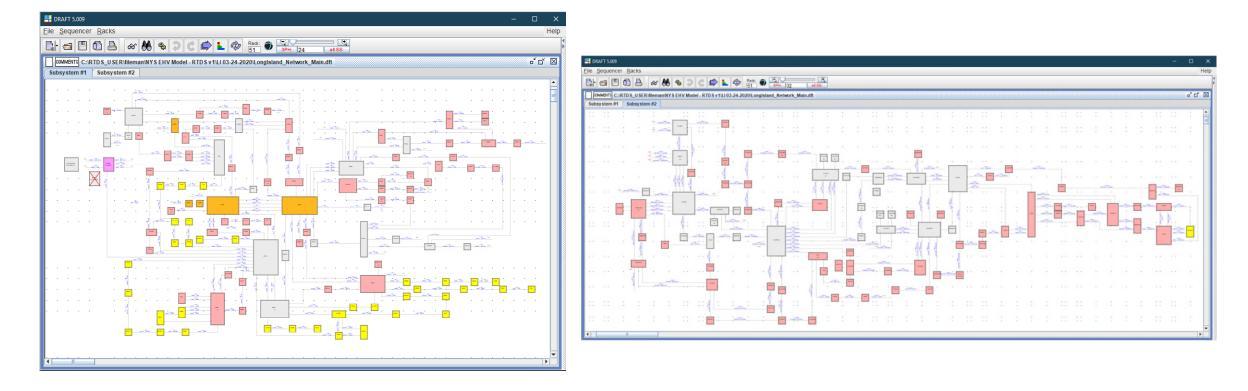
9GW OFFSHORE WIND

- 3 HVAC and 5 HVDC farms.
- Empire Wind 1 (816 MW) includes 68
 DSW turbines.
- Remaining 7 farms are aggregated models.
- All HVDC converters are switching models.

<u>New York Bight Task Force Wind Developer Project Summaries (boem.gov)</u>


Real-Time EMT Simulation Modeling Strategy

Real-Time EMT Simulation - RTDS: 230 kV + Grid Model


- Use of hierarchy boxes to facilitate component organization.
- Utilization of color coding for different voltage levels.

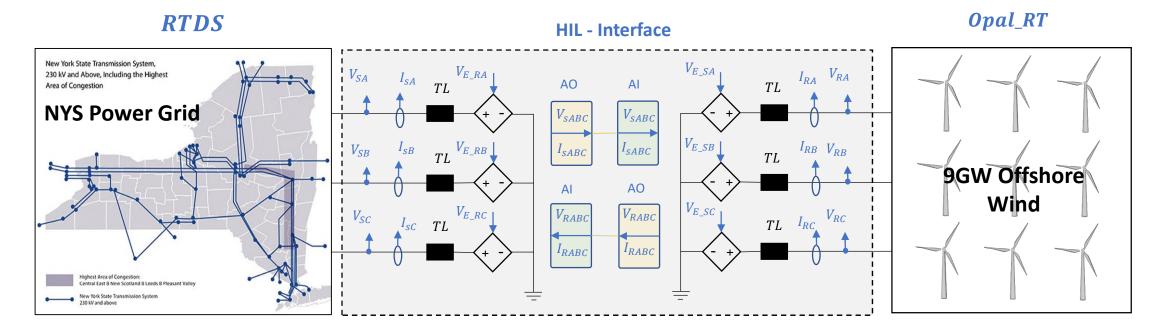
May 23, 2023

RT EMT SIMULATION - RTDS: REGIONAL GRIDS MODELS

- Regional models cover all voltage levels down to lower transmission and sub-transmission levels.
- Ability to utilize as stand alone "pieces" or in an RTDS-TSAT co-simulation environment.

RTDS MODEL MANAGEMENT

- Converting PSS/E models to RSCAD is a demanding task.
- NY State PSS/E model is updated few times a year by NYISO.
- Updating the RSCAD model of the NY State grid is required to keep the model consistent with the PSS/E models (i.e. current state of the grid).
- To address this issue, a Python based tool was developed to perform the automatic update by reading the PSS/E Raw file and overwriting the parameters of the components in the RSCAD Draft file.
- Requirement: Components in the Draft file should be named following a predefined naming convention. For example: SGT_1_123123.

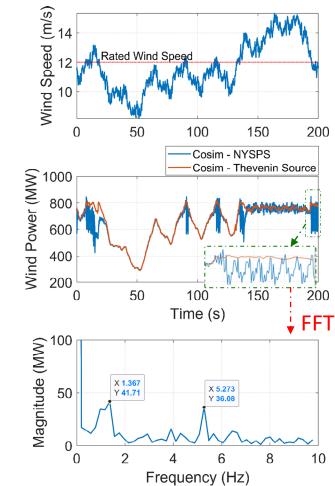

PSSE-TO-RSCAD PYTHON TOOL: GUI

	SSE to RSCAD Draft Updater - 0.1.3	– 🗆 X			
Select the updated PSS/E Raw file	Select PSS/E Version: PSSE33 PSSE33 Python Interpreter Configured: True [All OK] Select PSS/E .raw file:	psse33 v psse33 psse34	Verify PSS/E		
Select the to-be- updated Draft file	Select .raw Select RSCAD .dft file:	Read .raw			
	Select .dft Use comma (,) to enter separate multiple areas and zones inputs. You may enter 'ALL' to process all areas and zor (Note: Input as a string, i.e., 'name1, name2') Enter the area(s) of interest: ALL Enter the zone(s) of interest: ALL What component(s) would you like to update? You may enter one or multiple of the following: source, load, generator, transformer, bus. ALL Set output directory, output dft filename, output log filename: C:\Users\phho002\Box Sync\001_AGILe\11_Projects\01_RTDSModelingBSA2019-2020\Task1Deliverables\01_Pyth outputRSCAD_05262020104507	Change			
	changes_log_05262020104507 Process Outputs: Run Conversion	Directory View Files			

INTERCONNECT WIND FARMS AND NYSPS

- NYS power system is modeled in RTDS ; 9GW offshore wind is modeled in Opal-RT.
- Real-time co-simulation between RTDS and Opal-RT is developed to test the interconnection.
- Hardware-in-the-loop (HIL) interface is developed to perform real-time co-simulation.

RT CO-SIMULATION OF EMPIRE WIND 1

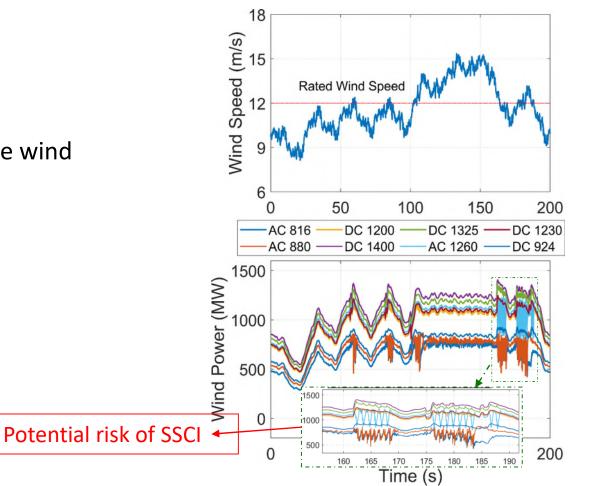

Two cases are conducted to verify the performance:

- Case 1: Empire Wind 1 connects to Thevenin equivalent source in RTDS. Shortcircuit power is calculated by peak fault current at Gowanus bus.
- Case 2: Empire Wind 1 connects to full **NYSPS** model in RTDS.

Two cases are tested under condition of dynamic wind speed:

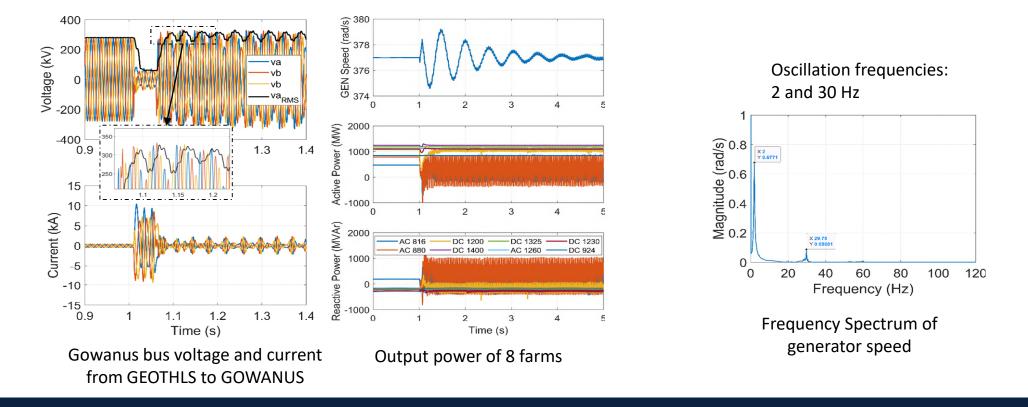
- Case 1 (Cosim Thevenin Source) is working normally.
- Case 2 (Cosim NYSPS): transition between regions 2 and 3 causes significant oscillation at frequencies of 1.4 and 5.3 Hz.

The risk of sub-synchronous control interaction is only revealed when wind farm connects to full NYS power grid model.



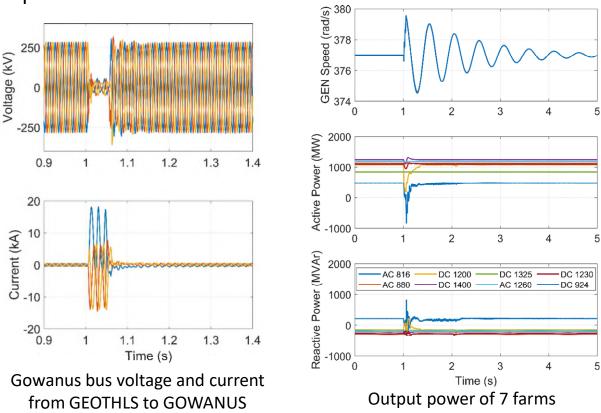
RT CO-SIMULATION OF 9GW OFFSHORE WIND

- Real-time co-simulation between RTDS and Opal-RT successfully operates.
- EMT models of both NYS power grid and 9GW Offshore wind are utilized.
- Wind speed varies from 8m/s to 16m/s to evaluate:
 - MPPT function
 - Power curtailment
- Potential risk of SSCI is found.

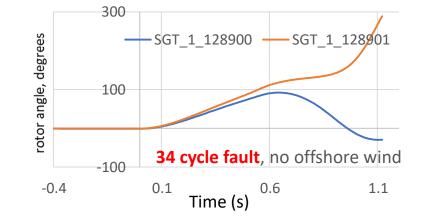


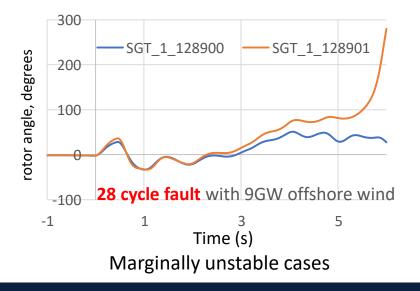
May 23, 2023

FAULT STUDIES – 8 FARMS


- Three-phase-to-ground fault at GOETHLS bus; fault impedance is 0.1Ω and fault duration is 3 cycles.
- Significant oscillation in three farms: AC816, AC880, and DC1200.
- Peak fault current is 10kA, resulting in short circuit power of 5GW. (SCR ≈1.2)

FAULT STUDIES – 7 FARMS


- Disconnect farm AC880 connected to Fresh Kills (HVAC cable length of 95 km)
- 7 farms are restored to normal operation.



CRITICAL CLEARING TIME STUDY

- Fault at Freeport near Barrett substation.
- Two cases are tested to evaluate the critical clearing time: with 9GW wind and without 9GW wind.
- Measured rotor speed of 2 critical synchronous generators at Barrett substation for comparison of instability behaviors:
 - SGT_1_128900: 170 MVA
 - SGT_1_128901: 220 MVA
- Offshore wind reduced the critical clearing time.

CONCLUSION

- Various types of EMT IBR models are presented:
 - o DSW and AVG single WTG models
 - o Detailed and aggregated wind farm models
- Different EMT models can be combined to simulate large-scale IBR plants.
- Real-time co-simulation between Opal-RT and RTDS allows EMT simulation of both power grids and IBR plants.
- Various studies on large-scale power system can be performed on the RT co-simulation:
 - o Balance and unbalance faults
 - o Control interactions such as SSCI, SSR, etc.
 - o Harmonic resonance

QUESTIONS? CONTACT: AGILE@NYPA.GOV

WWW.NYPA.GOV/AGILE

