LEVERAGING RTDS FOR OPERATOR TRAINING

MICHAEL BREUHL AND CLIFTON BLACK SOUTHERN COMPANY

SOUTHERN COMPANY

- Electric Operating Companies
- Natural Gas Companies
- Southern Power
- PowerSecure
- Southern Nuclear
- Southern LINC
- Southern Telecom

43,000 MW of generating capacity

Capabilities in **50 States**

9 Million customers

SCHATZ GRID VISUALIZATION AND ANALYTICS CENTER (SGVAC)

Pre-operational development, evaluation and demonstration of situational awareness technologies for Transmission & Distribution

Benefits:

Test and validate before implementation Evaluate technology with real-world data Test "control center of the future" functionalities

Quickly stand-up pilot assessments

Collaborate with industry partners

Train control center operators

SGVAC FOCUS AREAS

OPERATOR TRAINING WITH RTDS

• Goal

 Evaluate the feasibility of leveraging RTDS for transmission operator training

Motivation

Supplement current training capabilities

- New phenomena due to changing energy landscape
- Develop models with more realistic system responses to contingency events and operator actions
- o Generate displays that replicate the operator user interfaces

PROCESS

- Coordinated with our internal training team to determine simulation scenarios of interest
- Created models based on our PSS/E transmission model
- Appropriately scaled simulations for study scenarios
- Developed training views in RSCAD runtime

TRAINING SETUP

- Screens
 - Trainer screens show everything including controls to initiate events
 - Trainee screens show a limited number of controls and meters
- Training
 - Trainees are provided a runtime file for the specified scenario
 - Trainers implement events
 - Trainees identify the event and resolve the situation

TRAINER VS TRAINEE VIEW

Trainee screen

Trainer screen

TRAINING SCENARIOS

- Conditions
 - \circ Faulted line
 - \circ Islanded system
 - \circ Lost load
- Operator actions demonstrated

 Clear faulted line
 Resynchronize islanded system
 - Resynchronize islanded system
 - Restore load

Island Scenario

TRAINING MODEL: TRANSMISSION SYSTEM

SCENARIO: FAULTED LINE

• Situation

 $_{\odot}$ Fault causes a set of breakers to trip a line

 \circ Fault persists on the line

 $_{\odot}$ One breaker recloses on the line

 $_{\odot}$ Remaining breaker will not close until the fault is cleared

• Required operator action

 \circ Identify location of fault and clear it

- Reclose breaker to restore the line
- Takeaway

o RTDS provides accurate system response to trainee's control actions

SCENARIO: ISLANDING

- Situation
 - Fault islands the system
- Required operator action
 - Recognize the event
 - Resynchronize the islanded system
 - Close breaker to reconnect islanded system
- Takeaway
 - RTDS facilitates intuitive controls to resynchronize island and restore system

TRAINING MODEL: SUB-TRANSMISSION SYSTEM

SCENARIO: LOAD RESTORATION

- Situation
 - Fault causes automated protection to trip
 - Load is dropped
 - Line is de-energized
- Required operator action
 - Find alternate pathway to restore load
 - Clear fault
 - Re-energize line
- Takeaway
 - Flexibility to build training simulations representing a wide variety of historical grid events

RESULTS

- Successfully demonstrated a variety of training simulations
- Internal team was impressed with the ability of RTDS to generate training scenarios
- The effort illustrated the following

Automated grid response to operator actions
 Flexibility to create target scenarios based upon user needs
 Recreated similar HMIs to native operator views

FUTURE STEPS

- Develop additional scenarios based upon internal training needs
- Improve dynamic performance of the system
- Further refine runtime views to reflect operator screens
- Explore cost effectiveness of training using RTDS versus other training methods
- Investigate the level of detail to appropriately represent study scenarios

THANK YOU!

ANY QUESTIONS?

