THE GTSOC: BLACK BOX CONTROL INTEGRATION WITH THE RTDS SIMULATOR

CHRISTIAN JEGUES, P.ENG RTDS TECHNOLOGES INC.

2023 North American RTDS TECHNOLOGIES INC. APPLICATIONS & TECHNOLOGY CONFERENCE

Outline

- Why are Black Box Controls Important?
- Black Box Controls with the RTDS
- Introduction to GTSOC
- Deploying Blackbox Controls on the GTSOC
- GTSOC Examples

Why are Black Box Controls Important?

- Controller circuitry may be tightly integrated with power circuitry
- Difficult to scale if a large number of controllers are involved
- Customers want models that accurately reflect the real control and protection equipment provided by vendors
- The same code base used by vendors can be used to create the black box model
- Vendor's IP must be protected
- Generic models have their limitations
- Tuning generic models can be very time consuming

Black Box Controls with the RTDS

Component Builder (Cbuilder)

- Allows users to develop their own component models which would run in real time
- Programmed using subset of C, specific structure required
- May require vendors to maintain two separate code bases

💿 New Component	×
Select a Component Type:	
Control	-
Control	
Power System	

Black Box Controls with the RTDS Compiled Hierarchy Box

- Blackbox controller could be modelled using standard library components and/or CBuilder components
- Hierarchy boxes can be compiled to secure the contents
- Only the compiled code needs to be sent to the customer
- Vendor would need to verify that the model matches the actual controller
- Vendor may need to maintain this model in addition to the original controller source code

Black Box Controls with the RTDS

Other Hardware

- External PC
 - Windows OS
 - Dynamic Library *.dll
 - Static Library *.lib
 - Linux
 - Shared Library *.so
 - Static Library *.a
- ARMv8-A Processor
 - Supports Bare Metal Execution of Static Library *.a
- Real-time operation is a critical requirement

Black Box Controls with the RTDS

× Linux OS running shared library (.so)

The problem is the **indeterministic** execution time spike ~ 200 us, which is hard to eliminate without third-party real-time OS support.

✓ **Bare-Metal** running static library (.a)

Bare metal guarantees **deterministic** timing: <1us spike.

Introduction to GTSOC

- New hardware to support execution of black box controls
- GTSOC System-on-Chip
- Combination of FPGA and Multi-Processor Systemon-Chip (MPSoC)
- Supports Bare Metal Execution of Static Library (*.a) Files containing Vendor Source Code
- Interconnects with NovaCor via Fiber Optic Cables

GTSOC Hardware

- Xilinx Zynq UltraScale+ XCZU15EG
- Processing System (PS)
 - 4 Application cores: ARM Cortex-A53
 - 2 Real-time cores: ARM Cortex-R5
 - High/low speed connectivity
- Programmable Logic (PL)

2023 NORTH AMERICAN RTDS APPLICATIONS & TECHNOLOGY CONFERENCE

XILINX.

UltraScale+™

XCZU15EG™

FFVB1156

DF26361A

TATWAN

Deploying Blackbox Controls on the GTSOC

- Vendor C/C++ Source Code
 - Written by Hand
 - Generated via MATLAB/Simulink
- RTDS GTSOC Blackbox Builder Tool
 - Source code compiled into Static Library (*.a)
 - Wrapper code is used for mapping inputs/outputs and parameters
 - Generates Firmware (*.mcs) for GTSOC
- Templates are Provided for Wrapper Code

RTDS GTSOC Blackbox Builder

- Cross-compile C/C++ source code to static library (*.a) file
- Develop wrapper code
 - Templates provided
- Links the static library to build application executable .elf file
- Generate the GTSOC firmware (*.mcs) file
- Requires Xilinix Vitis Software

RSCAD FX GTSOC DOTA Component

- Each GTSOC unit has one ARM Cortex-A53 Processsor with 4 cores
 - Each ARM Cortex-A53 core requires one DOTA component
 - Each DOTA component supports up to 5 DOTA instances
 - Each DOTA instance supports up to 64 inputs and 64 outputs
 - Each instance could be the same (multi-instance) or different
- Black Box Controller parameters can be read in via text file and used during initialization stage prior to execution

GENERAL CONFIGURATION	Name	Description	Value	Unit	Min	Max	
CEREMAL CONTROLMENTON	Name	DOTA Component Name	DOTA				
DOTA S/W VERSION SETTING	EnDota	Enable DOTA Execution (5-bit Starting From LSB)	EnDOTA				
DOTA #1 CONFIGURATION	nminst	Number of DOTA Instances	1		1	5	
DOTA #1 INPUT	dotadt	DOTA Simulation Time-step	50	us	10	500	
DOTA #1 OUTPUT	ctrlGrp	Assigned Control Group	1		1	36	
	Pri	Priority Level	1		1		
DOTA STATUS MONITORING	Port	GTIO Fiber Port Number	1		1	24	
AUTO-NAMING SETTINGS							

GENERAL CONFIGURATION	Name	Description	Value	Unit	Min	Max
	pfx	Add Signal Name Prefix for DOTA #1 Instance	D1			
OOTA S/W VERSION SETTING	sfx	Add Signal Name Suffix for DOTA #1 Instance	D1			
DOTA #1 CONFIGURATION	nminput	Number of Inputs (From RTDS Variables) to DOTA Function	11		1	64
DOTA #1 INPUT	nmoutput	Number of Outputs (To RTDS Variables) From DOTA Function	15		1	64
DOTA #1 OUTPUT	enp1	Import DOTA#1 Parameters From txt File	No 👻			
DOTA #1 COTFOT	fnp1	If Yes, Specify the File Name	dota1_para	.txt		
DOTA STATUS MONITORING						
AUTO-NAMING SETTINGS						
AUTO-NAMING SETTINGS						

DOTA Instance Configuration

General Configuration

12

DOTA Component

DOTA

#3

35

36

#4

45

#5

59

48 50

DOTA

EnDOTA

50

0000.00.00

#2

22 26

#1

15

Name:

S/W:

Port:

EnDOTA[.]

DotaStep(us):

Simulink DFIG System (Electrical System)

2023 NORTH AMERICAN RTDS APPLICATIONS & TECHNOLOGY CONFERENCE

Simulink DFIG System (Control System)

Turbine and Drive Train:

Wind turbine Drive train

Wind Turbine Controls

Filtering and measurements Grid-side converter control system Rotor-side converter control system Speed regulator & pitch control

Wind Turbine controls - GE DFIG 1.5MW

2023 NORTH AMERICAN RTDS APPLICATIONS & TECHNOLOGY CONFERENCE

14

Rotor-side Controls

RSCAD FX DFIG System

Electrical System (on NovaCor):

• Same as the circuit in Simulink

Control System (on GTSOC):

- Filtering and measurements
- Grid-side converter control system
- Rotor-side converter control system
- Speed regulator & pitch control

Interface (NovaCor & GTSOC)

• DOTA component: RTDS interface (Port 1-20)

2023 NORTH AMERICAN RTDS APPLICATIONS & TECHNOLOGY CONFERENCE

Multi-Core and Multi-Instance Testing

Electrical system :

• 21 DFIG systems, 2 AC Thevenin networks

Control system:

- 20 DFIG controls on 4 GTSOC cores (every 5 DFIGs controls on one GTSOC core)
- **Four DOTA components (**one per GTSOC core, each has 93 outputs and 53 inputs**)**

21 DFIG Electrical System

2023 NORTH AMERICAN RTDS APPLICATIONS & TECHNOLOGY CONFERENCE

Multi-Core and Multi-Instance Testing -

Timing 20 DFIG DOTA Timing + Communication Timing (93 Outputs +53 Inputs): 22us ± 1us jitter

- Communication : 6.3us
- Each DFIG DOTA : (23-6.3)/5 = 3.34us

Multi-Core and Multi-Instance Testing – AC Fault

Fault on the AC Thevenin System 1 and 2 (20 DOTAs on 4 GTSOC

2023 NORTH AMERICAN RTDS APPLICATIONS & TECHNOLOGY CONFERENCE

Wind Turbine System Example

RSCAD FX Case

For the wind turbine energy system:

- Current injection to represent the machine-side converter
- **UCM** to represent the grid-side converter
- Grid-side transformer, windfarm Integration transformer, and Thevenin equivalent AC source
- GTSOC (DOTA) is used for the UCM converter control.
- Simulation time step size: 100us

Wind Turbine System Example

Timing Statistics

DOTA execution time has a 10ms (red circle) and 1ms (green circle) periodic jump. This is not spike or jitter but Customer's scheduled tasking.

Max execution time: 42.7us

Min execution time: 14.8us

Instantaneous execution time: 18us

Average execution time: 19us

SMA Inverter Example

RSCAD FX Case

For the PV system:

- PV panel
- UCM to represent the grid-side converter
- Grid-side transformer, scaling transformer, and Thevenin equivalent AC source
- GTSOC (dota) time step size: 166.67us.
- Simulation time step size: 50us

SMA Inverter Example

Timing Statistics

DOTA execution time: periodic jumps (purple and green) are not spikes but scheduled controller tasking (e.g., protection).

2023 NORTH AMERICAN RTDS APPLICATIONS & TECHNOLOGY CONFERENCE

THANK YOU! QUESTIONS?

