RTDS SIMULATION OF GRID FORMING INVERTER BASED RESOURCES

PRESENTER – BRUCE LIU RTDS TECHNOLOGIES INC.

Table of Content

VF, Droop and Synchronverter

1

Typical Grid-Forming Controls

RTDS GFM Model Applications

Introduction

Figure 1-1 Overview of Modern Power System

Power Electronics Applications:

- Solar/Wind energy integration
- Battery energy storage system (BSEE)
- HVDC and FACTS
- Electric vehicles and so on...

Ongoing Power Systems:

- Declining in shares of synchronous generators
- Increasing demand for renewable energy
- More integration of inverter-based resources (IBRs)
- Most IBRs are grid-following (GFL) IBRs
- System strength becoming weaker

Introduction

Old Train:

- Only the locomotive provides horse power
- The carriages does not provide any horse power
- There is a weight limit to carry
- If the locomotive loses power, the train loses synchronization and stops

High Speed Train:

- All carriages are capable to provide horse power
- Theoretically, there is no weight limit to carry as long as the number of carriages can increase
- One or a few of the carriages lose power, the train can still run at a synchronous speed

Grid Following vs. Grid Forming

Items	Grid-following IBRs	Grid-forming IBRs	
Reliance	Relies on the voltage and frequency at the interconnection point	To take responsibility to maintain the grid voltage and frequency	
Dynamic behavior	Control the active and reactive current component to the grid	Control the voltage magnitude and phase/frequency output	
PLL	PLL or similar control is required	PLL may be used but not required	
Black start	Usually not possible	Has black start capability	
System SCR	May operated under low SCR but there is a threshold	No minimum SCR requirement and may operate under 100% power electronics	
Standards	Well-developed standards and widely used commercially	Not well-standardized, very limited operational experience at system perspectives	

Motivations

Present	1–3 years	3–6 years	>6 years		
 Early trends in grid- forming applications Identify research challenges in: Voltage control Frequency control System protection System recovery Modeling and simulation. 	 Solve research challenges Develop grid-forming hardware, software, and controls Develop grid-forming- based grid controls Lab testing and evaluation Identify grid-forming integration challenges for demonstration. 	 Microgrids to island grids grid-forming demonstration Solve system integration challenges Demonstration in weak grids/bulk grid Demonstrate grid- forming grid controls Draft standards. 	 Establish technical standards for grid- forming Standardize grid- forming inverter models Begin adaptation of grid-forming inverters for standard operation in bulk grids. 		
Figure 1-4 Development Trend and Timeline for GFM IBRs [2]					

TYPICAL GRID FORMING CONTROLS

Figure 2-2 Example of two GFM IBRs

Figure 2-3 Interaction between two GFM IBRs

Voltage Loop v_{od}^{*} Voltage Loop v_{od

Note

- The output θ and V* of the outer loop may be directly used for PWM and produce firing pulses to control the VSC
- The voltage and current loop has current limiting capability, and can provide fast control of the voltage at the PCC

GFM Control	Inertia Support	Operation Features	Applicable Scenarios
VF Control	No	Provides constant voltage and frequency at PCC, and there is no droop characteristics	Passive network only
Droop Control	Yes	Provides similar droop characteristics of synchronous generators (SGs)	
VSG	Yes	In addition to the features of droop control, it mimics the inertia and damping characteristics of SGs	Both active and passive networks
Synchronverter	Yes	In addition to the features of VSG, it mimics excitation characteristics of SGs	

VSG EXAMPLE

Virtual Synchronous Generator

Figure 3-1 Virtual Synchronous Generator (VSG)

VSG: can simulate the moment of inertia (*J*) and the damping characteristics (D_p) of the rotor.

Runtime Settings

Grid Connected Operation

Droop Characteristics in Islanded Mode

VSG Black Start and Fault Occurrence

Inertia Constant Validation

1.500195

40 · 30 · 20 ·

0.500065

1.00013

$$J \frac{d\omega}{dt} = T_m - T_e - D_p (\omega - \omega_0) \approx \frac{P_m - P_e}{\omega_0} - D_p (\omega - \omega_0)$$
$$2H \frac{d\omega}{dt} = \Delta P - D_p \Delta \omega$$
$$H = \frac{\Delta P}{2 \times d\omega/dt}$$
$$R_{Load} = \frac{V_o^2}{P_{Rated}} = \frac{0.315kV^2}{1MW} = 0.099225\Omega$$

2023 NORTH AMERICAN RTDS APPLICATIONS & TECHNOLOGY CONFERENCE

2.000259

2.500324

3.000389

Stability Analysis – Frequency Scanning

SCR=3.6 and operating under rated power

RTDS EXAMPLES – VF, DROOP, VSG, AND SYNCHRONVERTER

VF and Droop Control

Figure 4-1 Droop Control

Note

- *P and Q* are measured active and reactive power
- m_p and m_q are droop coefficients of *P*-*f* and *Q*-*V*.
- P_{set} and V_{set} are targeted real power and voltage magnitude; ω_0 is the rated frequency.
- θ and V* represents the magnitude, phase, and frequency of the output voltage.

Synchronverter

Figure 4-2 Synchronverter

Synchronverter: more characteristics of SGs are considered, including electromagnetic torque, induced electromotive force, mutual inductance between rotor and stator, and rotor excitation current

Universal GFM VSC

Figure 4-3 Universal GFM Example

- The Universal GFM VSC Example includes four commonly used GFM Controls, Droop, VSG, Synchronverter, and VF.
- User can switch control mode by a dial switch while running the simulation case.
- Per-unitized control parameters and users can easily integrate the VSC to systems with different conditions

RTDS GFM MODEL APPLICATIONS

Bess and Renewables

Figure 5-1 GFM VSC Applications in BESS and Renewables

Microgrid Applications

Figure 5-2 GFM VSC with a GFL Solar Farm

HVDC Applications

Figure 5-3 GFM VSC Application in Offshore Windfarm HVDC

HVDC Applications

Figure 5-4 Bipolar HVDC VSC for Windfarm

THANK YOU! QUESTIONS?

References

- 1. High Share of Inverter-Based Generation Task Force. 2022. "Grid-Forming Technology in Energy Systems Integration." Reston, VA: Energy Systems
- Lin, Yashen, Joseph H. Eto, Brian B. Johnson, Jack D. Flicker, Robert H. Lasseter, Hugo N. Villegas Pico, Gab-Su Seo, Brian J. Pierre, and Abraham Ellis. 2020. "Research Roadmap on Grid-Forming Inverters. Golden, CO: National Renewable Energy Laboratory." NREL/TP-5D00-73476.
- 3. Y. Li, Y. Gu and T. C. Green, "Revisiting Grid-Forming and Grid-Following Inverters: A Duality Theory," in IEEE Transactions on Power Systems, vol. 37, no. 6, pp. 4541-4554, Nov. 2022.
- 4. W. Du et al., "A Comparative Study of Two Widely Used Grid-Forming Droop Controls on Microgrid Small-Signal Stability," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 2, pp. 963-975, June 2020.
- 5. H. Zhang, W. Xiang, W. Lin and J. Wen, "Grid Forming Converters in Renewable Energy Sources Dominated Power Grid: Control Strategy, Stability, Application, and Challenges," in Journal of Modern Power Systems and Clean Energy, vol. 9, no. 6, pp. 1239-1256, November 2021.
- 6. D. B. Rathnayake et al., "Grid Forming Inverter Modeling, Control, and Applications," in IEEE Access, vol. 9, pp. 114781-114807, 2021.
- 7. T. Liu, X. Wang, F. Liu, K. Xin and Y. Liu, "Transient Stability Analysis for Grid-Forming Inverters Transitioning from Islanded to Grid-Connected Mode," in IEEE Open Journal of Power Electronics, vol. 3, pp. 419-432, 2022.
- 8. Q. -C. Zhong and G. Weiss, "Synchronverters: Inverters That Mimic Synchronous Generators," in IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1259-1267, April 2011.
- 9. B. Fan, T. Liu, F. Zhao, H. Wu and X. Wang, "A Review of Current-Limiting Control of Grid-Forming Inverters Under Symmetrical

Disturbances," IEEE Open Journal of Power Electronics, vol. 3, pp. 955-969, 2022.

