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Introduction

Figure 1-1 Overview of Modern Power System

Power Electronics Applications:

• Solar/Wind energy integration

• Battery energy storage system (BSEE)

• HVDC and FACTS

• Electric vehicles and so on…

Ongoing Power Systems:

• Declining in shares of synchronous generators

• Increasing demand for renewable energy

• More integration of inverter-based resources 

(IBRs) 

• Most IBRs are grid-following (GFL) IBRs 

• System strength becoming weaker
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Introduction
Old Train:

• Only the locomotive provides horse power

• The carriages does not provide any horse power

• There is a weight limit to carry

• If the locomotive loses power, the train loses 

synchronization and stops

High Speed Train:

• All carriages are capable to provide horse power

• Theoretically, there is no weight limit to carry as long 

as the number of carriages can increase

• One or a few of the carriages lose power, the train 

can still run at a synchronous speed
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Grid Following vs. Grid Forming

Grid

PLL

Control

Vt,θt  
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Grid

Control
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Zsmall

AC

Items Grid-following IBRs Grid-forming IBRs

Reliance Relies on the voltage and

frequency at the interconnection

point

To take responsibility to maintain

the grid voltage and frequency

Dynamic

behavior

Control the active and reactive

current component to the grid

Control the voltage magnitude and

phase/frequency output

PLL PLL or similar control is required PLL may be used but not required

Black start Usually not possible Has black start capability

System SCR May operated under low SCR but

there is a threshold

No minimum SCR requirement and

may operate under 100% power

electronics

Standards Well-developed standards and

widely used commercially

Not well-standardized, very limited

operational experience at system

perspectives

Figure 1-2 GFL IBR

Figure 1-3 GFM IBR
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Motivations

Figure 1-4 Development Trend and Timeline for GFM IBRs [2]
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TYPICAL GRID FORMING 
CONTROLS
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Typical GFM Controls

Figure 2-1 Commonly used Control Methods for GFM IBRs
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Typical GFM Controls

Figure 2-3 Interaction between two GFM IBRsFigure 2-2 Example of two GFM IBRs
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Typical GFM Controls


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Figure 2-4 GFM Control General Structure
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Typical GFM Controls

GFM Control Inertia Support Operation Features Applicable Scenarios

VF Control No
Provides constant voltage and frequency at 

PCC, and there is no droop characteristics Passive network only

Droop Control Yes
Provides similar droop characteristics of 

synchronous generators (SGs)

Both active and passive 

networks
VSG Yes

In addition to the features of droop control, it 

mimics the inertia and damping 

characteristics of SGs

Synchronverter Yes
In addition to the features of VSG, it mimics 

excitation characteristics of SGs 
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VSG EXAMPLE
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Virtual Synchronous Generator 

Figure 3-1 Virtual Synchronous Generator (VSG)

VSG: can simulate the moment of inertia (J) and the damping characteristics (Dp) of the rotor.
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Runtime Settings
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Grid Connected Operation
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Droop Characteristics in Islanded Mode
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VSG Black Start and Fault Occurrence

1.75 pu

-1.75 pu
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Inertia Constant Validation 
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Stability Analysis – Frequency Scanning

SCR=3.6 and operating under rated power
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RTDS EXAMPLES – VF, DROOP, 
VSG, AND SYNCHRONVERTER 
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VF and Droop Control
1
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Note

- P and Q are measured active and reactive power

- mp and mq are droop coefficients of P-f and Q-V.

- Pset and Vset are targeted real power and voltage 

magnitude; 0 is the rated frequency.

−  and V* represents the magnitude, phase, and 

frequency of the output voltage.

Figure 4-1 Droop Control
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Synchronverter

Figure 4-2 Synchronverter

Synchronverter: more characteristics of SGs are 

considered, including electromagnetic torque, induced 

electromotive force, mutual inductance between rotor 

and stator, and rotor excitation current 
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Universal GFM VSC

Figure 4-3 Universal GFM Example

• The Universal GFM VSC Example 

includes four commonly used GFM 

Controls, Droop, VSG, Synchronverter, 

and VF. 

• User can switch control mode by a dial 

switch while running the simulation 

case.

• Per-unitized control parameters and 

users can easily integrate the VSC to 

systems with different conditions
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RTDS GFM MODEL 
APPLICATIONS
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Bess and Renewables
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Figure 5-1 GFM VSC Applications in BESS and Renewables 
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Microgrid Applications

Figure 5-2 GFM VSC with a GFL Solar Farm
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HVDC Applications
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Figure 5-3 GFM VSC Application in Offshore Windfarm HVDC 
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HVDC Applications

Figure 5-4 Bipolar HVDC VSC for Windfarm
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THANK YOU!
QUESTIONS?
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