RTDS SIMULATION OF GRID FORMING INVERTER BASED RESOURCES

PRESENTER – BRUCE LIU RTDS TECHNOLOGIES INC.

Table of Content

VF, Droop and Synchronverter

1

Typical Grid-Forming Controls

RTDS GFM Model Applications

Introduction

Figure 1-1 Overview of Modern Power System

Power Electronics Applications:

- Solar/Wind energy integration
- Battery energy storage system (BSEE)
- HVDC and FACTS
- Electric vehicles and so on*…*

Ongoing Power Systems:

- Declining in shares of synchronous generators
- Increasing demand for renewable energy
- More integration of inverter-based resources (IBRs)
- Most IBRs are grid-following (GFL) IBRs
- System strength becoming weaker

Introduction

Old Train:

- Only the locomotive provides horse power
- The carriages does not provide any horse power
- There is a weight limit to carry
- If the locomotive loses power, the train loses synchronization and stops

High Speed Train:

- All carriages are capable to provide horse power
- Theoretically, there is no weight limit to carry as long as the number of carriages can increase
- One or a few of the carriages lose power, the train can still run at a synchronous speed

Grid Following vs. Grid Forming

Motivations

TYPICAL GRID FORMING CONTROLS

Figure 2-2 Example of two GFM IBRs Figure 2-3 Interaction between two GFM IBRs

 v_{od} * v_{od} \frown PI * v_{oq} \sum \sum v_{oq} $\begin{array}{c}\n\sqrt{w}C_f & \cdots \\
\hline\n\sqrt{w}C_f & \$ Voltage Loop v_{od} **v** v_{oq} | v_{oq} ι_{ld} * i_{ld} \longrightarrow \longrightarrow PI * i_{lg} $\sum_{n=1}^{\infty}$ PI $\sqrt{\frac{\omega L_f}{\omega L_f}}$ $\sqrt{\frac{\omega L_f}{\omega d_f}}$ Current Loop V_{invd} **v** V_{invq} 1

Note

- The output θ and V^* of the outer loop may be directly used for PWM and produce firing pulses to control the VSC
- The voltage and current loop has current limiting capability, and can provide fast control of the voltage at the PCC

VSG EXAMPLE

Virtual Synchronous Generator

Figure 3-1 Virtual Synchronous Generator (VSG)

VSG: can simulate the moment of inertia (*J*) and the damping characteristics (*D^p*) of the rotor.

$$
J\frac{d\omega}{dt} = T_m - T_e - D_p(\omega - \omega_0) \approx \frac{P_m - P_e}{\omega_0} - D_p(\omega - \omega_0) \qquad \omega - \omega_0 = -\frac{\Delta P}{\omega_0 D_p}
$$

$$
V^* = \iint_V (V_0 - V) \times \frac{1}{K_q} + Q_0 - Q \times K_i dt \qquad V_0 - V = (Q_0 - Q)K_q
$$

Runtime Settings

Grid Connected Operation

Droop Characteristics in Islanded Mode

VSG Black Start and Fault Occurrence

Inertia Constant Validation

$$
J\frac{d\omega}{dt} = T_m - T_e - D_p(\omega - \omega_0) \approx \frac{P_m - P_e}{\omega_0} - D_p(\omega - \omega_0)
$$

\n
$$
2H\frac{d\omega}{dt} = \Delta P - D_p\Delta\omega
$$

\n
$$
H = \frac{\Delta P}{2 \times d\omega/dt}
$$

\n
$$
R_{Load} = \frac{V_o^2}{P_{Rated}} = \frac{0.315kV^2}{1MW} = 0.099225\Omega
$$

Stability Analysis – Frequency Scanning

SCR=3.6 and operating under rated power

RTDS EXAMPLES – VF, DROOP, VSG, AND SYNCHRONVERTER

VF and Droop Control

Figure 4-1 Droop Control

Note

- *P and Q* are measured active and reactive power
- *m^p and m^q* are droop coefficients of *P-f and Q-V*.
- *Pset and Vset* are targeted real power and voltage magnitude; ω_{o} is the rated frequency.
- − *and V** represents the magnitude, phase, and frequency of the output voltage.

Synchronverter

Figure 4-2 Synchronverter

Synchronverter: more characteristics of SGs are considered, including electromagnetic torque, induced electromotive force, mutual inductance between rotor and stator, and rotor excitation current

Universal GFM VSC

Figure 4-3 Universal GFM Example

- The Universal GFM VSC Example includes four commonly used GFM Controls, Droop, VSG, Synchronverter, and VF.
- User can switch control mode by a dial switch while running the simulation case.
- Per-unitized control parameters and users can easily integrate the VSC to systems with different conditions

RTDS GFM MODEL APPLICATIONS

Bess and Renewables

Figure 5-1 GFM VSC Applications in BESS and Renewables

Microgrid Applications

Figure 5-2 GFM VSC with a GFL Solar Farm

HVDC Applications

Figure 5-3 GFM VSC Application in Offshore Windfarm HVDC

HVDC Applications

Figure 5-4 Bipolar HVDC VSC for Windfarm

THANK YOU! QUESTIONS?

References

- 1. High Share of Inverter-Based Generation Task Force. 2022. "Grid-Forming Technology in Energy Systems Integration." Reston, VA: Energy Systems
- 2. Lin, Yashen, Joseph H. Eto, Brian B. Johnson, Jack D. Flicker, Robert H. Lasseter, Hugo N. Villegas Pico, Gab-Su Seo, Brian J. Pierre, and Abraham Ellis. 2020. "Research Roadmap on Grid-Forming Inverters. Golden, CO: National Renewable Energy Laboratory." NREL/TP-5D00-73476.
- 3. Y. Li, Y. Gu and T. C. Green, "Revisiting Grid-Forming and Grid-Following Inverters: A Duality Theory," in IEEE Transactions on Power Systems, vol. 37, no. 6, pp. 4541-4554, Nov. 2022.
- 4. W. Du et al., "A Comparative Study of Two Widely Used Grid-Forming Droop Controls on Microgrid Small-Signal Stability," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 2, pp. 963-975, June 2020.
- 5. H. Zhang, W. Xiang, W. Lin and J. Wen, "Grid Forming Converters in Renewable Energy Sources Dominated Power Grid: Control Strategy, Stability, Application, and Challenges," in Journal of Modern Power Systems and Clean Energy, vol. 9, no. 6, pp. 1239-1256, November 2021.
- 6. D. B. Rathnayake et al., "Grid Forming Inverter Modeling, Control, and Applications," in IEEE Access, vol. 9, pp. 114781-114807, 2021.
- 7. T. Liu, X. Wang, F. Liu, K. Xin and Y. Liu, "Transient Stability Analysis for Grid-Forming Inverters Transitioning from Islanded to Grid-Connected Mode," in IEEE Open Journal of Power Electronics, vol. 3, pp. 419-432, 2022.
- 8. Q. -C. Zhong and G. Weiss, "Synchronverters: Inverters That Mimic Synchronous Generators," in IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1259-1267, April 2011.
- 9. B. Fan, T. Liu, F. Zhao, H. Wu and X. Wang, "A Review of Current-Limiting Control of Grid-Forming Inverters Under Symmetrical

Disturbances," IEEE Open Journal of Power Electronics, vol. 3, pp. 955-969, 2022.

