DEVELOPMENT OF A CURRENT TRANSFORMER MODEL WITH SATURATION CHARACTERISTICS

YEONG-GEUN KIM

DEPT. OF ELECTRICAL ENG., MYONGJI UNIVERSITY

PRESENTATION CONTENTS

*** INTRODUCTION**

DEVELOPMENT OF A CT UDM (User Define Model)

- Purpose & Target CT Equivalent Circuit
- Proposed CT UDM
 - ✓ Computation of the ϕ − *i* curve from the V_{rms} − I_{rms} curve
 - ✓ Dommel's network solution technique considering nonlinear circuit

***** SIMULATION STUDIES

- Verification of the CT UDM by applying open circuit test
- Apply CT UDM to the power system

CONCLUSIONS

INTRODUCTION

Background

- Distorted signals caused by CT saturation results in mal-operation or operating time delay of relay
- Many utilities, including KEPCO use real-time simulators such as RTDS to perform dynamic tests of relays on CT saturation
- Some CT saturation countermeasure algorithms use nonlinear magnetization characteristic curve of CT to cope with these problems
- Need to ensure correct relay operation by detecting CT saturation or restoring the distorted signals

* Problem

When Vrms-Irms excitation curve (open circuit test data from a manufacturer) is applied to the RTDS
CT model, the curve obtained from its simulation is a bit different from the applied Vrms-Irms data

INTRODUCTION

Proposed CT UDM(User Define Model) based on the modelling method of a nonlinear element suggested by Dommel

- Computation of the ϕi curve from the $V_{rms} I_{rms}$ curve
 - ✓ L. A. N. Neves, H. W. Dommel, "On Modelling Iron Core Nonlinearities", IEEE Transactions on Power Systems, Volume 8, pp. 417 – 425, May 1993.
- Network solution technique considering nonlinear circuit
 - ✓ H. W. Dommel, "Nonlinear and time-varying elements in digital simulation of electromagnetic transients", IEEE Trans. Power App. Syst., vol. PAS-90, pp. 2561-2567, Nov./Dec. 1971.

***** Simulation Studies

- Verification of the CT UDM and RTDS CT model by applying open circuit test
- Apply UDM to the power system model in RSCAD

DEVELOPMENT OF A CT UDM(USER DEFINE MODEL)

Purpose & Target CT Equivalent Circuit

• $V_{rms} - I_{rms}$ based Excitation Curve (10 points data used)

Linear approximation of each segment

C800 (2000:5) CT Excitation Curve

* Computation of the $\phi - i$ curve from the $V_{rms} - I_{rms}$ curve

- **<u>10 points data is used for modelling</u>** nonlinear branch(magnetizing inductance) in UDM
- An example of the computation method using 3 points is below

***** Computation of the $\phi - i$ curve from the $V_{rms} - I_{rms}$ curve [STEP 1]

Obtaining the points $V_1, V_2, ..., V_k$ on the vertical axis is simply a re-scaling procedure form rms to peak values

$$V_k = \sqrt{2}V_{k-rms}$$

Calculation of the peak current I_1 on the horizontal axis is straightforward (Since first point of Vrms, Irms is in the linear segment)

$$I_1 = \sqrt{2}I_{1-rms}$$

***** Computation of the $\phi - i$ curve from the $V_{rms} - I_{rms}$ curve [STEP 1]

***** Computation of the $\phi - i$ curve from the $V_{rms} - I_{rms}$ curve [STEP 2]

 Computation of the $\phi - i$ curve from the $V_{rms} - I_{rms}$ curve [STEP 2]

Network solution technique condisering nonlinear circuit

- Compensation method can be applied if there is only one nonlinear element in the circuit
- Nonlinear element is replaced by a current source i_{km}

* Network solution technique considering nonlinear circuit

The solution process in each time step

① Compute node voltage without nonlinear element

② Solve the two scalar equations <u>Network Equation</u> and <u>Nonlinear Equation</u> simultaneously for i_{km}

(3) Find the final voltage solution by super-imposing the response to the current source i_{km}

Simultaneous solution of two equations

* Network solution technique considering nonlinear circuit

The solution process in each time step

(2) Solve the two scalar equations <u>Network Equation</u> and <u>Nonlinear Equation</u> simultaneously for i_{km}

(3) Find the final voltage solution by super-imposing the response to the current source i_{km}

Linear network including only one nonlinear element

***** CT UDM & model parameters

Current_Transformer.def										
BURDEN Vrms Irms DATA			SIGNAL I	SIGNAL NAMES						
MAIN DATA PROC		ESSOR ASSIGNMENT			TRAN	TRANSFORMER DATA				
Name		Description		Value		Unit		Min	Max	
Vrms1	Vrms1		40.0	40.0		0.0				
Irms1			0.0				0.0			
Vrms2			90.0				0.0			
Irms2			0.0				0.0			=
Vrms3		250.0			0.0					
Irms3			0.0		0.0					
Vrms4			400.0		0.0					
Irms4			0.0			0.0				
Vrms5			550.0				0.0			
Irms5			0.0				0.0			
Vrms6			600.0				0.0			_
Update Cancel Cancel All										

Current_Transformer.def									
BURDEN	JRDEN Vrms Irms DATA SIGNAL NAMES								
MAIN DA	GNMENT	NMENT TRANSFORMER DATA							
Name	Description		Value	Unit		Min	Max		
Rbi	Burden series resistance		1	Ohms		1e-9			
Lbi	Burden series inductance		1e-9	Н		1e-9			
Current_Transformer.def									
BURDEN Vrms Irms DATA SIGNAL NAMES									
MAIN DATA PROCESSOR ASSIG			IGNMENT	NMENT TRANSFORMER DATA					
Name	Description		Value		Unit	Min	Max		
lsec	Total Secondary Current Name		Isec_UDM	Isec_UDM					
Ibur	Burden	Current Name	Ibur_UDM						
Imag	Magnetizing Current Name								
Flux	lux Flux Name								
Vbur	our Burden Voltage Name								

Verification of the CT UDM by applying open circuit test

Simulation Conditions

- Compared Models
 - ✓ CT UDM
 - ✓ RTDS CT model
- Input Signal
 - ✓ Sinusoidal current

	[Irms]	[Vrms]				
Point 1	0.0129	40				
Point 2	0.0291	90				
Point 3	0.0816	250				
Point 4	0.134	400				
Point 5	0.209	550				
Point 6	0.283	600				
Point 7	0.984	700				
Point 8	1.98	750				
Point 9	4.48	800				
Point 10	9.98	850				

Verification of the CT UDM by applying open circuit test

1 Using RTDS CT Model

- Input Saturation Characteristics Data Types
 - 1) Physical Core Data
 - **B-H Characteristic Data** 2)
 - 3) Vrms-Irms Characteristic Data

RTDS CT Equivalent Circuit

(2) Using RTDS Saturable Reactor Model

- **Construct a CT equivalent circuit using Saturable Reactor Model**
- Input Saturation Characteristics Data
 - \checkmark Linear Inductance, Knee-point Voltage, Air Core Inductance

Verification of the CT UDM by applying open circuit test

Ignore Core Loss, Secondary Resistance and Leakage Reactance

Technologies

USER SPOTLIGHT SERIES BY

	V1,I1 V	/10,I10 P-LOSS DA	TA N	IONITORING	SIGNA	SIGNAL NAMES					
	MAIN DATA	A PROCESSOR ASSIG	NMENT	TRANSFOR	MER DATA	BURDEN					
	Name	Name Description		ie Unit	Min	Max					
\setminus	Rs	Secondary Side Resistance	0.0	Ohms	0.0						
	Ls	Secondary Side Inductance	0.0	Н	0.0						
	Ratio	Ratio Turns ratio			0						
	V1,I1 V10,I10 P-LOSS DATA			IONITORING	SIGNA	IAL NAMES					
	MAIN DATA	A PROCESSOR ASSIG	NMENT	TRANSFOR	MER DATA	BURDEN					
	Name	Description	Value	Unit	Min	Max					
	LoopW	Loop Width 0		%	0	100					

RTDS CT Parameters Menu

Verification of the CT UDM by applying open circuit test

Burden voltage of 850 [rms volts]

Verification of the CT UDM by applying open circuit test

* Change burden voltage from 0 to 850 [rms volts] by using script

Test results

Apply CT UDM to the power system

* 154 - 22.9kV Power system

Apply CT UDM to the power system

Apply CT UDM to the power system

CONCLUSIONS

- Summary of the presentation
 - When Vrms-Irms data is applied to the RTDS CT model, the curve obtained from its simulation is a bit different from the applied Vrms-Irms data
 - CT UDM which accurately reflects input data was developed using <u>computation method of the</u> <u>peak data from rms data</u> and <u>network solution technique(nonlinear element is included)</u>
 - Verity the performance of the CT UDM by using open circuit test and apply to the power system

Can be regarded as an effective method to simulate the CT saturation phenomenon

Future Studies

- Consider Core Loss (Hysteresis loss & Eddy current loss)
- Consider residual flux simulation

REFERENCES

- L. A. N. Neves, H. W. Dommel, "On Modelling Iron Core Nonlinearities", IEEE Transactions on Power Systems, Volume 8, pp. 417 – 425, May 1993.
- 2 H. W. Dommel, "Nonlinear and time-varying elements in digital simulation of electromagnetic transients", IEEE Trans. Power App. Syst., vol. PAS-90, pp. 2561-2567, Nov./Dec. 1971.
- ③ RTDS "POWER SYSTEM COMPONENTS MANUAL"

THANK YOU FOR YOUR ATTENTION

