WEBINAR: Real-time Simulation for De-Risking Energy Storage Integration

RTDS.COM

AGENDA

- History and introduction to the technology
- Hardware and software overview
- Energy storage background and modelling capabilities
- Demonstration in RSCAD
- Q&A

RTDS TECHNOLOGIES - THE COMPANY

- Based in Winnipeg, Canada
- ~80 employees
- World pioneer of real-time simulation and exclusive supplier of the RTDS Simulator
- Representatives in over 50 countries
- Hardware and software development, model development, customer support, sales and marketing, finance, product assembly and testing all under one roof

HISTORY OF REAL-TIME SIMULATION

• 1986

RTDS development project begins

• 1989

World's 1st real-time digital HVDC simulation

• 1993

1st commercial installation

1994 RTDS Technologies Inc. created

WORLDWIDE USER BASE

WORLDWIDE USER BASE

The University of Manchester

APPLICATION AREAS

Distribution

- Microgrid testing.
- Renewables/DERs.
- Distribution automation.
- Inverter testing.

Smart Grid

- Wide Area P&C testing.
- PMU studies.
- Cyber security.

Power Electronics

- HVDC and FACTS.
- Energy conversion.
- Drives.

Protection

- Digital substations.
- Travelling wave testing.

WHAT IS EMT SIMULATION?

Type of Simulation	Load Flow	Transient Stability Analysis (TSA)	Electromagnetic Transient (EMT)
Typical timestep	Single solution	~ 8 ms	~ 2 - 50 µs
Output	Magnitude and angle	Magnitude and angle	Instantaneous values
Frequency range	Nominal frequency	Nominal and off- nominal frequency	0 – 3 kHz (≤15 kHz)

ADVANTAGES OF EMT SIMULATION

- Allows for a greater depth of analysis than phasor domain (RMS) representations
- RMS models lack the ability to capture fast network dynamics during transient conditions and may provide optimistic results [1]
- Important for modern systems with many power electronic converters (more likely to predict control instability) [1]

Wind farm fault ride through

Synchronous generator fault ride through

WHAT IS REAL TIME?

- Real time it takes for an event to occur = Simulation time of an event.
 - E.g. 3 cycle fault for 60Hz system = 0.05 seconds. RTDS simulates this fault in real time i.e.
 0.05 seconds
 - Non-real-time simulations will simulate events faster or slower than real time depending on case complexity
- Values updated each timestep
 - All calculations and servicing I/O completed within a timestep.
 - Every timestep has same duration and is completed in real time
- Requires dedicated parallel processing hardware

ADVANTAGES OF CLOSED-LOOP (HIL) TESTING

Real time operation is what allows us to connect physical devices in a **closed loop** with the simulated environment <u>(hardware-in-the-loop</u> <u>HIL)</u>

- Test continues after the action of the protection/control device, showing dynamic response of the system
- Test multiple devices (and entire schemes) at once
- Much more detailed system representation than open-loop test systems provide (e.g. modelling power electronics)
- No need to bring equipment out of service

HARDWARE REQUIRED FOR REAL-TIME SIMULATION AND HIL TESTING

Parallel processing hardware

Input/output devices

Communication protocol based

Analogue/digital

REAL-TIME SIMULATION SOFTWARE: RSCAD

FX

ENERGY STORAGE MODELLING

- Energy storage
 - PEM fuel stack model
 - Battery energy storage systems
 - Lithium ion battery model
 - Input for temperature
 - Flywheel sample case
 - Wheel modelled via added mass to PMSM rotor
 - Average model case also available
 - Pumped hydro sample case
 - Variable-speed DFIM system
 - Average model case also available

CONVERTER MODELLING OPTIONS

Converter models are run on the main RTDS Simulator processing hardware (no FPGA required)

NEW OPTION: Universal Converter Model (UCM)

- Switching function state space model
- Can be used in Mainstep or Substep environment
- Accurately represent switching >100 kHz
- Switch at ~3 kHz at ~30-50 us: huge computational savings

Don't miss our UCM Webinar! Wednesday June 30, 2021 – 9 AM CST Visit <u>www.rtds.com</u> to register

UTILITY PROJECT EXAMPLE: BATTERY INTEGRATION San Diego Gas & Electric

- Testbed for BESS integration
- Validate functional behaviour, coordination with DERMS, and effects on local protection

POWER HARDWARE IN THE LOOP (PHIL)

• Simulated environment exchanges power with renewable energy hardware, motors, batteries, loads, etc.

You can contact me at kati@rtds.com

RTDS.COM

Real Time Simulation for De-Risking Energy Storage Integration

RTDS.COM

AGENDA

- Introduction
 - Fundamentals, Types and Applications of Energy Storage Systems

Modeling Energy Storage Systems

- Batteries
- Flywheels
- Pumped Hydro
- Energy Storage Case Demonstrations
- Questions and Answers.

RTDS.COM

Fundamentals of Energy Storage

- Electric Energy is converted and stored from one form to the other.
 - Fossil Fuels (Coal, Oil, Natural Gas)
 - Hydro Electric Dams.
 - Renewable Energy (Wind and Solar)

Types of Energy Storage

Mechanical

- Pumped Hydro
- Combustion Engines
- Flywheels

Electrochemical

- Batteries
- Fuel cells

Thermal

- Molten Salt
- Geothermal

Chemical/Biochemical

- Biomass
- Methane

Applications of Energy Storage

Fundamentals of Energy Storage

Global Energy Storage Consumption, 2013-2025 (MW)

Modeling Energy Storage Systems

RTDS.COM

Pumped Hydro Storage (PHS)

• Most mature and widespread method for large-scale electricity storage. Contributes over 95% of global energy storage capacity

Image Credit: Consumers Energy/CMS Energy

• Stores/generates electricity by moving water between reservoirs at different elevations.

Pumped Hydro Storage: Benefits and Drawbacks

- PHS provide bulk energy storage for locations where large conventional hydro systems are not viable.
- PHS provide fast load and energy balancing, black start grid capability and reactive power support.
- PHS have high operating efficiencies (70% 80%) and life cycles over 50 years.

Drawbacks

- Technical requirements for PHS operation include a sufficient amount of water and elevation between the reservoirs to allow smaller pump/turbine units and reduced system losses.
- PHS require access to reliable transmission networks for power supply to grid/loads.
- PHS have high capital investment costs

PHS Operation

Generation Mode: Generator/Turbine Operation

PHS Operation

Pumping Mode: Motor/Pump Operation

PHS Operation

Pump and Turbine Controls

• Regulates the water flow by adjusting the speed and gate position for a given water head (height between reservoirs).

PHS Operation: Variable Speed Converters

- Double Fed Induction Machines (DFIM)
 - Lower converter ratings.
 - Suited for High Power Applications (>100MW)

- Well established SM technology.
- Robust and high efficiencies.
- Small to Medium Power Applications (< 100MW)

Battery Energy Storage Systems (BESS)

Image Credit: www.greentechmedig.com

Battery Operation: Charging and Discharging

- Factors for BESS operation
 - State of Charge (SOC)
 - Battery Capacity (Ampere Hours)
 - Open circuit voltage (Eoc)
 - Charge/Discharge Cycle
 - Self Discharge rate
 - Battery age
 - Temperature dependence

Battery Electric Circuit Model

• Detailed modeling of battery operating characteristics increases complexity of the simulation model

• Thevenin Circuit Model

Battery Storage: Benefits and Drawbacks

- Benefits
 - High energy densities
 - Back up power for grid voltage support.
 - Flexible and customizable especially for on site customer storage and revenue generation
- Drawbacks
 - High Cost of Startup, Maintenance and Recycling
 - Limited life span 5-10 years
 - Dangerous chemicals and high risk of fire hazards

Flywheel Energy Storage Systems

Flywheel Storage: Benefits and Drawbacks

- Benefits
 - Able to provide long discharge cycles for high energy capacity
 - Fast power, frequency and voltage control response.
 - Long design life spans 30 years
 - No chemicals and fire hazards like batteries
- Drawbacks
 - Flywheel storage capacity is size dependent creating space constraints.
 - Fixed installation due to nature of Flywheels.
 - Prone to mechanical stress and bearing failures

Flywheel Energy Storage: Configuration

• Typical Permanent Magnet Synchronous Machine drives used in Flywheels.

Real Time ElectroMagnetic Transient Models for Energy Storage and Renewable Applications

RTDS.COM

Control System Models

Power Converters Models

Power Converters Models

#3 = 16 ELSE 32

Energy Storage and Renewables Models

Energy Storage Case Demonstrations

RTDS.COM

Case 1: Microgrid System with Flywheel & BESS

Case 2: Variable Speed Pumped Hydro

