Co-Simulation of Real-time and Offline Power System Simulators

RTDS European User Group Meeting 2023

Unrestricted | © Siemens 2023 | Christian Scheibe | T SEI MGO-DE

Background: Why Co-Simulation?

Agenda and Basis of the work

Basis and further Reading

Interfacing Real-Time and Offline Power System Simulation Tools using UDP or FPGA systems

Christian Scheibe, Ananya Kuri Piergiovanni La Seta, Xiao Peng Liang Power Technologies International Siemens AG Erlangen, Germany & Shanghai, China christian.scheibe@siemens.com Yuyao FENG, Le ZHAO, Xuejun XIONG Shanghai Electric Power Research Institute Shanghai, China

Johannes Knödtel, Philipp Holzinger, Christian Scheibe, Ananya Kuri, Marc Reichenbach, Gert Mehlmann Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen, Germany

Co-Simulation of real-time and offline power system models: An application example

Yuyao Feng and Xuejun Xiong State Grid Shanghai Municipal Electric Power Company Shanghai, China 13681916812@163.com Christian Scheibe, Hanzhong Wang, Piergiovanni La Seta and Holger Müller Siemens AG Erlangen, Germany & Beijing, China christian.scheibe@siemens.com

Co-Authors:

FAU Erlangen Nürnberg SG Shanghai MEPC Shanghai EPRI Siemens

Thank you for the collaboration and support!

Intro

EMT-RMS Interconnection

Page 6 Unrestricted | © Siemens 2023 | Christian Scheibe | T SEI MGO-DE

EMT-RMS SVC + LPF	 RMS → EMT Phasor Decomposition Interpolation 	
Re-Transformation	 Angle Correction 	Interpolation
$y = Y \cos(\omega t + \varphi)$ with $\varphi = \varphi_0 + \varphi + \varphi_{corr}$	<section-header>Angle Correction$φ_{corr} = 360^\circ * dt * f_0 * n_{steps}$</section-header>	$y_{\text{EMT}}(t_{\text{RMS}} + n\Delta t_{\text{EMT}}) = y(t_{\text{RMS}}^{-1}) + \frac{y(t_{\text{RMS}}^{-1}) - y(t_{\text{RMS}})}{n_{\text{max}}}n$

Electrical Equivalents EMT

EMT voltage source

- Three-phase instantaneous values from decomposition and interpolation
- Allows for initialization of the realtime model

Current source possible as well

• Must use a voltage source in the RMS model then

Electrical Equivalents RMS

Loadflow Model

- Thévenin Equivalent
- Fixed Active and Reactive Power
- ,Renewable Machine' in PSSE

Dynamics Model

- Norton Equivalent ,ISORCE'
- Values from data Handler
- Exchanged via a Shared Memory implementation

Realtime-Offline Interconnection Ethernet: UDP

Socket to Realtime-Machine

• GTNET in RTDS

Data Handler Software (PC)

- Sends and receives from/to the Realtime Machine, via UDP Socket
- Sends and receives from/to PSS/E Source Model
- Via a Shared Memory Core instance
- Handles missing data

Phasellus nec sem

• Compiled into the Source Model (C++ and Fortran)

Simulations Test Model

Simulations Case: 3ph Fault in EMT-Section

Simulations Case: 3ph Fault in RMS-Section

Page 14

1st Scope Extension: Transmission Grid (RMS) and HVDC (EMT)

HVDC: Fixed Sources vs. Dynamic Grid Model

2nd Scope Extension: East China Power Grid Model

<figure>

Previous Model, Monolithic BPA:

- 12,000 nodes
- 7 HVDC Converter Stations, 3 in RTDS
- Voltage levels 525 kV, 775 kV and 1050 kV

HVDC and Grid reaction to a fault

Conclusions And further work

A feasible enhancement of real-time capabilities

- Good match for electrical values
- UDP interface needs no futher hardware
- PQ identical in steady state

Broad utility in the real-time space

- Reduced demand for network reduction techniques
- Enables multi-vendor capabilities
- Prevents re-modelling efforts, cuts iteration processes

WiP: From prototype to everyday's tool

- Extend network sizes and interface numbers
- Standardize interfacing

Thank You

Published by Siemens

Christian Scheibe R&D Project Manager

Technology - Multimodal Grid Operation Schuckertstr. 2 91058 Erlangen, Germany

E-mail Christian.Scheibe@siemens.com

