NEW FEATURES, COMPONENT MODELS, AND EXAMPLE CASES IN RSCAD-FX

ARUNPRASANTH SAKTHIVEL

RTDS TECHNOLOGIES INC.

2023 EUROPEAN USER'S GROUP MEETING

OUTLINE

- Features, Components, and Example Cases for
 - $\circ\,$ Power Electronics Simulation
 - o Multi Energy Simulation
 - $\circ~$ Protection & Automation
 - Cyber-Physical Simulation
 - $\circ\,$ Large Scale Power System Simulation
- Other New Components
- Questions

Evolution of PE Simulation in RTDS

Universal Converter Model (UCM)

- Can run on NovaCor and PB5-based RTDS Hardware.
- Supports Different Simulation Environments.
 - SubStep (<10us)
 - o MainStep (30~50 us)
 - \circ Distribution Mode (150~200 us)
- Supports Software-in-the-loop (SIL) and Hardware-in-the-loop (HIL) Testing.
- Supports Different Inputs.
 - Modulation Waveform or Averaged Value Model
 - Firing Pulse
 - $\,\circ\,$ Improved Firing Pulse with Mean Value High Precision

Universal

UCM Components

2023 EUROPEAN USER'S GROUP MEETING

Renewable Energy Example Cases

- Cases include
 - Wind Energy System (Type-1, Type-3, and Type-4)
 - Solar PV System
 - \circ Power Plant Control
 - $\,\circ\,$ LVRT and HVRT Controls
- All cases use UCM model and separate versions available for
 - $\circ~\mbox{Substep}$ with switching model converter
 - \circ Mainstep with switching model converter
 - $\circ\,$ Mainstep with average model converter
- Easy to Modify (Scale/Change Ratings) and Duplicate.

Renewable Examples.pdf

Grid Forming Converters

- A Grid Following (GFL) IBR tries to hold its output current, Id and Iq, at a constant value during the transient.
- A Grid Forming (GFM) IBR tries to hold an internal voltage phasor, VIBR $\angle \theta_1$, during the transient.

Typical Grid Forming Converter Control

- Several options available to generate θ and V*

 Virtual Synchronous Generator Technique
 VF and Droop Control Technique
 Synchronverter Technique
- The voltage and current loop have limiting capabilities, and can provide fast control of the voltage at the PCC

GFM Example Cases

- Separate example cases available for each category of Grid Forming Converter Controls.
- Details about the cases are given in the help document associated with the help documents.

Grid Forming Converter Examples (Under Development)

• Wind Energy Applications

• Microgrid Applications

Electric Vehicle Example Case

- Models for Electric Vehicle and Charging Station.
- EV model uses V2G Control in Automatic and Manual modes.
- Suitable for Steady State and High-Level Control Studies.

EV Powertrain Component and Example Case (Under Development)

- Longitudinal Vehicle component has been developed.
- A detailed example case on EV Powertrain is being developed.
- Suitable for Switching Transient Studies on EV systems.

Railway Example Case

- Models/Circuits to represent
 - \circ Train Sets
 - \circ Utility Grid
 - AC Voltage Conversion
 - \circ Feeder Configuration
 - $\,\circ\,$ Trolly Lines

Impedance Scan

- Analytical Method
 - System admittance is generated using equivalent circuits.
 - $_{\odot}\,$ Suitable for conventional power systems.
- Measurement Based Method
 - o Injects voltage/currents to measure impedance.
 - $_{\odot}\,$ Can incorporate effects of operating conditions.
 - Suitable for power electronic dominated power systems

Stability Analysis Tool (Under Development)

- Configure the scan process
- View scan results

2023 EUROPEAN

				_
Stability Analysis Tool				
a				
equency Scan Synthesized	d Responses	Results Viewer	Stability Analysis	
Scan Class	Measur	ement-Based	~	
Scan Type	AC Syst	em		
Number of Inputs	2			
Start Frequency	1		Hz	
End Frequency (Approx)	3000		Hz	
Frequency Increment	1		Hz	
Output File	frequence	cy_scan		
Impedance Output Type	Sequence	ce Impedance	~	
		Balanced 3 Phase	e Network	
Perturbation Parameters				
			_	
Perturbation Size		3	%	
Injection Base(s)		230, 115		
# Frequencies per sub	range	50		
# of sub-ranges		60		
System Settling Time		10	S	
DFT Calculation				
Sampling Window S	ize	1	∨ s	
# of Samples		10000		
		Start Scan	Cancel	

Stability Analysis Tool (Under Development)

- Synthesized Response
- Stability Analysis

2023 EUROPEAN

	Frequency Scan Synthesized Responses Results Viewer Stability Analysis
🖳 Stability Analysis Tool	$\begin{array}{c} \text{scanO15cn} \\ \text{scanO25cn} \\ \text{scanO35cn} \\ \text{scanO4 fscn} \end{array}$
Frequency Scan Synthesized Responses Results Viewer Stability Analysis Start Frequency 0.1 Hz End Frequency 3000 Hz Output File frequency_scan Type Series RL Impedance Output Type Sequence Impedance	System 1 scan01 facm System 2 scan02 facm Stat Frequency 0 1 End Frequency 3000 Impedance Output Type Sequence Impedance K 10 tau 0.0 us Sequence Area and the sequence Hz tau 0.0 us Stat Frequency 50 Hz tau 0.0 us Sequence Area and the sequence Sequence Area and the sequen
M_{R} L_{L} L M_{R} L L M_{R} L $\omega_{0}L$ L $\omega_{0}L$ L Resistance 2.4 OhmsInductance 0.075 H	Measured 0.3 kHz 1 Hz Skep Size AC inpedance (PN0) 230 KV base votage 25% perturbation 2 x 2 matrix Tdd (ab.c.d.ef) Tdq (ab.c.d.ef) Tqq (ab.c.d.ef)

🖳 Stability Analysis Tool

- 🗆 🗙

MMC Model for Mainstep (Under Development)

- An improved model of MMC to run on mainstep
- This eliminates the need of transmission line interface between the substep to mainstep.

MULTI ENERGY SIMULATION

Hydrogen System Models and Example Cases

 Example Cases 	
Name	
05 Energy Storage Systems	
Battery Systems	
FlyWheel and Pumped Storage Systems	
Fuel Cells	
▼ MEF	
MEF_ELZ_H2production	
🗋 ELZplant.jpeg	
🔀 MEF - Hydrogen Production via Electrolysis.pd	f
MEF_ELZ_H2production.rtfx	
 MEF_FCplant2grid 	
🗋 H2powerplant.jpg	
🔀 MEF - Fuel Cell Power Generation.pdf	
HEF_FCplant2grid.rtfx	

MULTI ENERGY SIMULATION

Hydrogen System Connection

MULTI ENERGY SIMULATION

Alkaline Electrolysis Model and Example Case (Under Development)

Alkaline Electrolyzer stack

Grid connected AWEL plant via a six-pulse thyristor rectifier

GSE-v7 Component

- Provides IEC 61850-8-1 Ed. 2.0 / 2.1 GOOSE communication and MMS Server functionality
- Simulates up to 4 IEDs (Generic or Third Party)
- Publish up to 16 GOOSE messages (4 GCBs per IED and 512 data items in total)
- GOOSE subscription up to 32 different GOOSE streams (512 data items in total)

IED Configuration Tool (ICT)

- Build IEC 61850 data models from the inbuilt LN database
- Emulate third-party IEDs from SCL files
- Bind input/outputs to RSCAD FX draft signals
- Import non-RTDS SCL files for GOOSE subscription configuration
- Generate CID and other auxiliary configuration files for GSE components

SimIED Feature

- Emulate third-party IEDs
- Supports any valid IEC 61850 SCL file (such as ICD, CID or SCD) with one or more IEDs
- Only standard data types and LN classes are supported (as defined in IEC 61850-7-x)

Sub Synchronous Oscillation (SSO) Relay Model

- Supports 'Single' and 'Multiple' frequency modes (up to 3 SSO elements)
- Monitor SSO frequencies and corresponding magnitudes

2023 EUROPEAN

New Set of Protection and Automation Example Cases

- Protection Examples
 - \circ Generator Protection
 - Series-compensated Line Protection
 - SSO Protection
- Automation Tutorials/Examples
 - GTNET Tutorials comprises a set of new tutorial cases that systematically present the process of simulating GTNET protocols
 - MODBUS Example Case

Editors for SCADA Protocols

- Automatic conversion of legacy text-based mapping file to XML-based file.
- Description fields for each point to better identify the purpose of the simulation.
- Intuitive combo-box options in each point's cell data.

104 IEC (🚾 IEC 60870-5-104 Editor, version:1.00-b29 2022-12-01 12:25:23 — 🗆 🗙							×				
File	Edit	Help	Set Type Type: 2.0 maximum 10 outstations. Close database to change type!									
Outstat	ion Bina	ry Status Dpos Sta	tus Analog S	Status Binary Co	ontrol	Dpos C	ontrol Analog (Control				
IOA	IOA_M	Variable Name	Bitmap	Default State	Group	Mask	Select Required		Description			
10000	9512	BRK_ctl_104	0 -	1=OFF 🔻	0x9		false 🔹	Breaker Open/Close	e Operation			
				0=intermediat	e							
				1=OFF								
				2=ON								
				3=indetermina	ate							
#Points	1	-										
Outst	ation_1	- (30	New] Cor	py	ete 💽 Save	RTDS	Data	a Set 1	•

GTNETx2 Merging Unit with PRP Support (Under Development)

- Provide the GOOSE, SV and MMS functionality necessary to emulate MUs
- Support Parallel Redundancy Protocol (PRP) for GOOSE and Sampled Values networks
- Since both LAN A and LAN B ports are required for the redundancy the GTNETx2 card will only run one firmware version when the redundancy feature is enabled

Traveling Wave Relay Model (TWR) – Based on Differentiator-Smoother (DS) Technique (Under Development)

- Includes current TW different protection scheme (TW87):
- Uses double-ended TW-based method.
- Supports single/three-pole tripping.
- Provides calculated fault location and faulted mode information.
- Option to detect an external fault on a parallel line.

Incident Wave Calculator (IWC) Model (Under Development)

- Uses Frequency Dependent Phase Domain (Universal Line Model) transmission line theory to calculate:
 - \circ The local incident current.
 - $_{\odot}\,$ The local reflected current.
 - \circ The expected remote incident current.

RTDS Simulator Interfaced with NS3 Network Simulator

- Advantages:
 - Can model an entire communications network.
 - Can Modify packets and frames of Protocols DNP3, MODBUS, IEC104, PMU, GOOSE and SV.
- Limitations:
 - The amount of traffic it can handle is limited.

Linux PC running NS-3 using the Tap mode

UGrid controller

Example Cases to Run Jointly with NS3

- Separate examples are provided to alter data for
 - o DNP3,
 - \circ MODBUS
 - o IEC104
 - \circ PMU
 - $\circ~$ GOOSE and SV

Name	
09 Machines and Drives	
10 Transformers	
🛅 11 Cybersecurity	
GTNET and NS3	
▼ T GTNET_GSE	
GOOSE_Communication.idf	
GOOSE_Communication.pdf	
GOOSE_Communication.rtfx	
GSE_TRIP.iaf	
GSE_TRIP.ipf	
🕒 GTNET1.cid	
🕒 GTNET2.cid	
PeakShaveTCP_rtfx	
ControlScriptTCP.scr	
CyberSecSimPeakShaveTCP.rtfx	
PeakShaveUDP_rtfx	
ControlScriptUDP.scr	
CyberSecSimPeakShaveUDP.rtfx	
GTNET and NS-3 for CyberSecurity Simulation.pdf	

RTDS Simulator Interfaced with SNORT Packet Modifier

Example Cases to Run Jointly with SNORT

- A Linux machine running the packet modifier is placed between the actual Client (User PC running P&A suite) and the Server (GTNET card) for the TCP/IP based protocols
- We cad add delay, jitter, reorder, corrupt, duplicate or drop packets.

Name					
10 Transformers					
 11 Cybersecurity 					
GTNET and NS3					
▼ CTNET_DNP					
GTNET_ DNP.pdf					
GTNET_DNP.dfx					
GTNET_DNP.dtp					
GTNET_DNP.sib					
pointsMap.txt					
▼ 🛅 GT_GT_FX					
GTENT_IED2.scd					
GTENT_IED2converted.CID					
GTNET_IED1.scd					
GTNET_IED1converted.CID					
🕒 GT_GT.iaf					
🕒 GT_GT.idf					
🕒 GT_GT.ipf					
🖶 GT_GT.rtfx					
GT_GT.sib					
GT_GTGSEcomponents.dpf					
T_GT_GT_original_2023-09-15@15_12_928.zip					
Standalone packet modifier for ICS.pdf					
12 Traction Systems					

Example Cases

2023 EUROPEAN USER'S GROUP MEETING

Superstep Simulation

Conventional Single-Rate Simulation (218 nodes and 2980 load units on Chassis)

Saving of ~ 500 Loadunits

Transient Stability Analysis (TSA) Module

- TSA module in RTDS intended to:
 - Represent a portion of a larger power system (up to ~2000 buses) using an equivalent TSA component.
 - Interface TSA module with EMT simulation (co-simulation/ hybrid simulation)
 - o Standalone TSA simulation is also supported.
 - Reduced number of cores (TSA module requires one core).

TSA	

EMT-TSA Interface

PSCAD-RTDS Co-Simulation

- Interface between NovaCor simulator and PSCAD has been developed.
- Main application is to run Blackbox models running in PSCAD which cannot be successfully migrated to RTDS.
- Intended for non-real time applications.

IIRTDS

• Control interface has been released and electrical interface is under development.

Electrical Interface

PSCAD-RTDS Co-Simulation

- UDP communication.
- PSCAD V5 Support only.

Data Conversion Programs

• RSCAD supports conversion of cases from other widely used offline tools

PowerFactory (PF) Conversion Program

- Similar to the PSCAD Conversion.
- Conversion can be customized.

Options			×
General Options Case Options	4	Initial Directory:	C:\RTDS_USER\fileman\Projects\DIgSILENT\Testing
Monitoring Options		Starting Rack:	1
		Timestep (µs):	50.000
		Nodes / Network:	300
		Networks / Rack:	1
	¥	Autoroute Limit (Grid Units):	50
		Save as Defaults	Close

2023 EUROPEAN USER'S GROUP MEETING

PowerFactory (PF) Conversion Program Example

Enhanced Non-Real Time Simulation (Under Development)

- To help
 - $\circ\,$ EMT network planning studies
 - \circ Consultants
- Support larger network (~10 times the capacity of NovaCor 1.0)
- Larger execution timestep (> 200 µs)
- No support for I/O and GTNET
- Will Support GTSOC

OTHER NEW COMPONENTS

Recently Released RSCAD Components

- Faulted Induction Machine
- Super Capacitor Bank

2023 EUROPEAN

- Dual Active Bridge (DAB) UCM with scaling
- UMEC transformer models with hysteresis

VALVE 2

VALVE 4

VALVE 4

Questions?

