

REDUCED-HARDWARE PHIL FOR REAL-TIME TESTING OF BESS

C. CARUANA, S. BHATTACHARYA, R. RAUTE AND A. MICALLEF

DEPT OF ELECTRICAL ENGINEERING, FACULTY OF ENGINEERING, UNIVERSITY OF MALTA

OVERVIEW

- Introduction
- COSTORE Project
- Proposed Reduced Hardware PHIL
- Case Study
 - Loop Delay
 - Performance
 - Loop Stability
- Wind Power Smoothing PHIL
- Conclusions

INTRODUCTION

- Significant efforts across the globe to increase the share of renewable energy sources (RES) on power networks
 - more environmentally sustainable
 - introduce important challenges
 - intermittent and non dispatchable nature affect the reliability of the network
 - excessive generation leads to reverse power flows which may cause voltage violations
- Battery Energy Storage Systems (BESS) increasingly seen as viable solution
 - numerous applications on distribution networks
 - can enhance the stability and reliability of renewable energy generation
 - however requires
 - substantial investment cost

COSTORE PROJECT

- Coordinated energy storage for low carbon power networks
- Objectives
 - development of optimisation routines for BESS sizing and location
 - study of interaction with other controllable network components
 - examination of BESS operation and control through PHIL simulation
 - evaluation of potential low-carbon scenarios through RTDS

PHIL SIMULATION

- Conventional system
 - power system modelled in RTDS
 - power amplifier to provide power interface to HuT
 - analog or digital communication links
 - feedback of HuT response to RTDS
- Power Amplifier requirements
 - 4 quadrant capability for bidirectional power flow
 - fast dynamics to minimise delay

PROPOSED REDUCED HARDWARE PHIL

- AFE used to interface BESS to grid
 - bidirectional power flow capability
 - fast dynamics so as not to affect battery response
 - can be used to perform the duty of power amplifier
- Pros
 - reduced hardware
 - known configuration
- Cons
 - does not allow test of grid-side dynamics

CASE STUDY

- 2MVA, 0.55kV
- Battery Bank
 - 12S 65P 51.2V 50Ah units
 - $E_{bb} = 614.4$ V, $R_{bb} = 0.011\Omega^1$
- Control loops
 - AFE
 - synchronised to grid via PLL
 - conventional vector control
 - V_{dc} loop, bandwidth \approx 30Hz
 - Bidirectional DC DC Converter
 - inner current loop, bandwidth \approx 200Hz
 - outer P_{BESS} loop, bandwidth \approx 3Hz

¹ D. Ansean et al., "DC internal resistance during charge: analysis and study on LiFEPO₄ batteries," in 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, 2013.

CASE STUDY

- P_{BESS} * set to
 - 1MW 3 rad/s reference with 10% 3rd harmonic distortion

Cascaded control loop schematic for P_{BESS}

 P_{BESS} * (green), P_{BESS} (red) and error (blue)

Reduced-scale hardware

HARDWARE SETUP

- 30kVA, 0.275kV
- Battery bank:
 - 6S 2P 51.2V 50Ah units
 - $E_{bb} = 307.2 \text{V}, R_{bb} = 0.1786 \Omega$
- Control loops
 - same BWs as actual system
- Scaling factors
 - $k_V = 2$
 - *k*_l = 33.33

Reduced-scale hardware

LOOP DELAY

- Component time delays
 - RTDS platform
 - $T_{RTDS} = \tau_{sS}$
 - Communication delays
 - assume analog channels
 - *T_{comSH}* (software hardware): GTAO card
 - *T_{comHS}* (hardware software): transducer, filters and GTAI card
 - $T_{com} = T_{comSH} + T_{comHS}$
 - Power interface
 - $T_{PI} \approx 2 \tau_{sH}^2$
 - Filters introduced in the loop: T_{filt}
- Loop delay
 - $T_{dloop} = T_{RTDS} + T_{com} + T_{PI} + T_{filt}$

² M. Zarif and M. Monfared, "Step-by-step design and tuning of VOC control loops for grid connected rectifiers," Electrical Power and Energy Systems, vol. 64, pp. 708-713, 2015.

- d delay
- s sampling
- S software
- H hardware
- $au_{
 m s}$ timestep

LOOP DELAY

- Loop delay also depends on interaction between two digital systems³
 - RTDS and switched power converter
- Both digital systems sample data once per cycle (τ_{ss} and τ_{sH})
 - sampling time synchronous with timestep
 - Power Interface: $K_H \tau_{sH}$
 - RTDS: $K_S \tau_{sS}$
 - can lead to variable delays
 - sampling by power converter
 - $T_{dvarH} = [0, \tau_{sH}]$
 - sampling by RTDS
 - $T_{dvarS} = [0, \tau_{sS}]$

³ E. Guillo-Sansano et al., "Characterisation of Time Delay in Power Hardware in the Loop Setups," IEEE Trans. Industrial Electronics, vol. 68, no. 3, pp. 2703-2713, 2021.

SETTING OF TIMESTEPS

• Due to variable time delays, number of τ_{sS} cycles for PHIL loop varies between [K_{s_min} , K_{s_max}]

•
$$K_{s_min} = ceil\left(\frac{T_{RTDS} + T_{com} + T_{PI} + T_{filt}}{\tau_{sS}}\right)$$
 $K_{s_max} = ceil\left(\frac{T_{RTDS} + T_{com} + T_{PI} + T_{filt} + \tau_{sH}}{\tau_{sS}}\right)$

- Time delay calculations
 - assume analog signal of 5V peak with frequency of 3 rad/s
 - $T_{comSH} \approx 4\mu s$, $T_{comHS} \approx 18.6\mu s$
 - $T_{filt} = 400 \mu s$
- Timesteps
 - $\tau_{ss} = 50 \mu s$
 - 3 τ_{sH} values considered & compared:
 - 40µs, 50µs and 60µs

Case	τ_{sS}	$ au_{sH}$	K _{s_min}	K _{s_max}	Delay
1	50µs	40µs	12	12	[600µs]
2	50µs	50µs	12	13	[600µs, 650µs]
3	50µs	60µs	12	14	[600µs, 700µs]

PERFORMANCE

• Case 1: 50µs, 40µs

• Case 2: 50µs, 50µs

• Case 3: 50µs, 60µs

 P_{BESS} * (green), P_{BESS} (red) and error (blue)

2023 EUROPEAN USER'S GROUP MEETING

L-Università ta' Malta

PERFORMANCE COMPARISON

• PHIL Cases 1-3

Case 1 (red), Case 2 (blue) and Case 3 (red)

• with Actual

Actual (green)

LOOP STABILITY

- Block diagram of the PHIL loop
 - T_d is the total loop delay

PHIL loop block diagram

- Nyquist plot
 - 700µs loop delay
 - LPF

L-Università ta' Malta

WIND POWER SMOOTHING

Schematic diagram of PHIL Loop.

A. Sattar et al., "Testing the performance of battery energy storage in a wind energy conversion system," IEEE Transactions on Industry Applications, vol. 56, no. 3, pp. 3196-3206, 2020.

WIND POWER SMOOTHING

 1^{st} plot - wind speed; 2^{nd} plot - P_{wo} , P_{net} * and P_{net} ; 3^{rd} plot – error between P_{net} * and P_{net} .

1st plot – battery voltage; 2nd plot – current i_b^* and i_b ; 3rd plot – error between i_b^* and i_b .

CONCLUSIONS

- Proposed the use of AFE as PI for Reduced Hardware PHIL
- Case study with reduced-scale hardware
 - effect of timestep interaction on the loop delay
 - loop stability
- Wind power smoothing
- Effective way for testing BESS

Thank you for your attention!

Contact: cedric.caruana@um.edu.mt

The authors would also like to acknowledge the project: "Setting up of transdisciplinary research and knowledge exchange (TRAKE) complex at the University of Malta (ERDF.01.124)" which is being co-financed through the European Union through the European Regional Development Fund 2014 – 2020. www.eufunds.gov.mt.

