

Real-time Simulation of Transformer Differential Protection based on Clarke-Wavelet Transform

M. Popov¹ and J. J. Chavez²

¹Delft University of Technology, the Netherlands 2 Instituto Tecnológico y de Estudios Superiores de Monterrey, Mexico

2024 EUROPE USER'S GROUP MEETING DELFT, NETHERLANDS

This presentation

- Introduction
- Problem statement
- Developing and results
- Conclusions

IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 37, NO. 1, FEBRUARY 2022

A Clarke-Wavelet-Based Time-Domain Power **Transformer Differential Protection**

Rodrigo Prado Medeiros[®], Flavio Bezerra Costa[®], Member, IEEE, Kleber Melo Silva[®], Senior Member, IEEE, Jose de Jesus Chavez Muro[®], Member, IEEE, Jose Raimundo Lima Júnior, and Marjan Popov^o, Senior Member, IEEE

 $\frac{1}{2}\Delta k$

Introduction

- Power transformers are essential in power systems for several key reasons:
	- **Voltage scaling up/down**: step-up or step-down voltage levels
	- **Voltage control**: regulates the voltage with the tap changer
	- **Load Balancing:** enables load distribution by connecting different parts of the electrical grid
	- **Flexibility in power supply:** allows integration of different types of energy sources, such as renewable energy (solar, wind) and traditional power plants
	- **Safety:** steps down high transmission voltages to safer levels for end users

Problem statement

- A fast isolation during fault is imperative to protect the system and the transformer itself
- Commonly, because of its characteristics, **DIFFERENTIAL PROTECTION** is normally used as a primary transformer protection
	- While effective, it must account for diverse situations such as transformer tap changers, CT saturation, overexcitation, and inrush currents
	- Normally, blocking methods enhance the security of the differential protection but may delay internal fault detection and can fail during inrush conditions
	- AI, digital signal processing, and probability theory have been explored to improve protection schemes. Even though they are useful, they increase the computational burden

Differential Protection Scheme

Proposed method

- The Proposed method is based partly on Clarke transform
	- Simple transform, low computational burden
	- it is sensitive and facilitates internal fault detection
	- deals with specific fault types and CT saturation.
- and partly on Wavelet transform,
	- improves detection speed
	- improves accuracy by analyzing high-frequency components

Clark-Wavelet differential protection

Clark-Wavelet Differential protection

<u>AMETEK</u>

Proposed Clark-Wavelet Differential

CT2 CB2 — ⊓—"™ $\overline{m}_{\overline{m}}$ t^1 i^2 Pre-Processins Scaling Coefficient Energy RT-BSWT Clarke • scaling coefficient energy of the currents are directly Transformation proportional to low-frequency components, which is ideal (4) Phase/ Magnitude to identify null-currents before transformer energization Adjustments Legend: \rightarrow Signal Differential - + Logic signal Coefficients Settings for Inrush Currents Differential $\mathcal{E}_{\infty}^{diff}$ **Energy** ϕ_{Scaling} Thresholding Energy Definition • transformer can be identified as opened when currents are lower than the pickup values, accomplished in the 87 TW α Settings for K_{α} =0.9 $K_{\alpha}=0.5$ **External Event** wavelet domain as follows $\varepsilon_{\Phi}(k) < E_{\Phi}$ inrush Detection currents $\mathcal{N}_\alpha = \frac{3}{4} \Delta \lambda$ $\mathcal{N}_a = \frac{1}{2} \Delta k$ $T_{\alpha}(k)$ Inception Time Detection of External Events• Based on energy $\varepsilon_{\alpha}^{op}(k) < K_{\alpha} \varepsilon_{\alpha}^{res}(k)$

 $\sqrt{}$ Trip

Power Transformer

CB1 CT1

RTDS implementation

RTDS implementation (1)

- 1st Analog to digital 2
- \cdot 2nd Real time boundary stationary wavelet

<u>AMETEK</u>

RTDS implementation (2)

• 3th & 4th Clark transform and Real-time boundary stationary wavelet and phase adjustment

• 6 Differential energy and threshold calculation

RTDS implementation (3)

• 7th & 8th Inrush current

• 9th External detection

• Breaker control

Trajectory of the energy operating points for most of the events

- Steady-state zone I
- Internal fault zone II
- Externals fault zone III
- External fault followed by CT saturation from I to III and then from III to IV (in the restraining region)
- External fault followed by internal fault from I to III and from III to V
- Overexcitation from I to III and then to IV (in the restraining region)
- Inrush current IV (restraining region)
- Inrush current with permanent fault II
- Inrush current followed by permanent fault from I to IV when the internal fault starts it changes to V

Internal fault A-B

External fault and clearance

Transformer energization

Conclusions

- **Transformer Protection Method:** a time-domain transformer differential protection method using wavelet and Clarke transforms, with a single differential unit (87TW α) that does not require phase segregation or harmonic-based functions.
- **Comparison with Conventional Protection**: The performance of the method was compared to conventional differential protection using both actual and simulated data.
- **Handling Actual Data**:
	- Conventional methods failed during transformer energization due to low harmonic content, resulting in a false trip.
	- The proposed method successfully handled this case in offline analysis.
	- Both methods correctly detected internal faults, but the proposed method was faster, detecting the fault in 65 μs versus two cycles for the conventional method.
- **Efficiency and Simplicity:** The use of Clarke and wavelet transforms ensures computational efficiency and simplicity, with the equations requiring only addition and multiplication, making hardware implementation feasible.

