

Real-time Simulation of Transformer Differential Protection based on Clarke-Wavelet Transform

M. Popov¹ and J. J. Chavez²

¹Delft University of Technology, the Netherlands ²Instituto Tecnológico y de Estudios Superiores de Monterrey, Mexico

2024 EUROPE USER'S GROUP MEETING Delft, Netherlands

This presentation

- Introduction
- Problem statement
- Developing and results
- Conclusions

IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 37, NO. 1, FEBRUARY 2022

A Clarke-Wavelet-Based Time-Domain Power Transformer Differential Protection

Rodrigo Prado Medeiros[®], Flavio Bezerra Costa[®], *Member, IEEE*, Kleber Melo Silva[®], *Senior Member, IEEE*, Jose de Jesus Chavez Muro[®], *Member, IEEE*, Jose Raimundo Lima Júnior, and Marjan Popov[®], *Senior Member, IEEE*

TUG USER'S GROUP MEETI

 $\frac{1}{2}\Delta k$

Introduction

- Power transformers are essential in power systems for several key reasons:
 - Voltage scaling up/down: step-up or step-down voltage levels
 - Voltage control: regulates the voltage with the tap changer
 - Load Balancing: enables load distribution by connecting different parts of the electrical grid
 - Flexibility in power supply: allows integration of different types of energy sources, such as renewable energy (solar, wind) and traditional power plants
 - **Safety:** steps down high transmission voltages to safer levels for end users

Problem statement

- A fast isolation during fault is imperative to protect the system and the transformer itself
- Commonly, because of its characteristics, DIFFERENTIAL PROTECTION is normally used as a primary transformer protection
 - While effective, it must account for diverse situations such as transformer tap changers, CT saturation, overexcitation, and inrush currents
 - Normally, blocking methods enhance the security of the differential protection but may delay internal fault detection and can fail during inrush conditions
 - AI, digital signal processing, and probability theory have been explored to improve protection schemes. Even though they are useful, they increase the computational burden

Differential Protection Scheme

Proposed method

- The Proposed method is based partly on Clarke transform
 - Simple transform, low computational burden
 - it is sensitive and facilitates internal fault detection
 - deals with specific fault types and CT saturation.
- and partly on Wavelet transform,
 - improves detection speed
 - improves accuracy by analyzing high-frequency components

Clark-Wavelet differential protection

Clark-Wavelet Differential protection

DELFT, NETHERLANDS

Proposed Clark-Wavelet Differential

Power

RTDS implementation

• Study case RSCAD Draft

RTDS implementation (1)

• 1st Analog to digital

• 2nd Real time boundary stationary wavelet

DELFT, NETHERLANDS

RTDS implementation (2)

• 3th & 4th Clark transform and Real-time boundary stationary wavelet and phase adjustment

• 6 Differential energy and threshold calculation

RTDS implementation (3)

• 7th & 8th Inrush current

• 9th External detection

• Breaker control

Trajectory of the energy operating points for most of the events

- Steady-state zone I
- Internal fault zone II
- Externals fault zone III
- External fault followed by CT saturation from I to III and then from III to IV (in the restraining region)
- External fault followed by internal fault from I to III and from III to V
- Overexcitation from I to III and then to IV (in the restraining region)
- Inrush current IV (restraining region)
- Inrush current with permanent fault II
- Inrush current followed by permanent fault from I to IV when the internal fault starts it changes to V

Internal fault A-B

DELFT, NETHERLANDS

External fault and clearance

Transformer energization

GM

Conclusions

- Transformer Protection Method: a time-domain transformer differential protection method using wavelet and Clarke transforms, with a single differential unit (87TWα) that does not require phase segregation or harmonic-based functions.
- **Comparison with Conventional Protection**: The performance of the method was compared to conventional differential protection using both actual and simulated data.
- Handling Actual Data:
 - Conventional methods failed during transformer energization due to low harmonic content, resulting in a false trip.
 - The proposed method successfully handled this case in offline analysis.
 - Both methods correctly detected internal faults, but the proposed method was faster, detecting the fault in 65
 μs versus two cycles for the conventional method.
- Efficiency and Simplicity: The use of Clarke and wavelet transforms ensures computational efficiency and simplicity, with the equations requiring only addition and multiplication, making hardware implementation feasible.

