

Development of a Rail Traction System Load model to Test Planned FACTS Devices on the Catenary Network

Akbo Rupasinghe Ph.D.

 TransGrid Solutions, Winnipeg, Canada

2024 EUROPE USER'S GROUP MEETING DELFT, NETHERLANDS

Overview

- The single-phase 25kV catenary network of a European railway network required voltage support
- Two single-phase STATCOMs were to be installed
- The STACOM controllers required controller hardware-in-the loop testing.
- Catenary network and electrical load of the train were modeled in detail on RSCAD

Catenary Network

Testing Procedure

- Different network configurations were specified.
 - Different loads at each load position
- All train loads to be accelerated and decelerated simultaneously while the STATCOMs are in service

Test Configuratio n Example

Position	Load Type	No. of Units
1	Thyristor	3
	PMCF	1 of 8 PMCF
2	Thyristor	5
	PMCF	1 of 8 PMCF
3	Thyristor	0
	PMCF	2 of 8 PMCF
4	Thyristor	5
	PMCF	1 of 8 PMCF and 2 of 12 PMCF
5	Thyristor	10
	PMCF	5 of 8 PMCF
6	Thyristor	0
	PMCF	1 of 8 PMCF
7	Thyristor	0
	PMCF	4 of 8 PMCF

Train Load Models

- Two types of train load models were to be considered:
 - Thyristor-based train load (not within TGS Scope)
 - Single-phase inverter-based train load (PMCF)
- Loads must be scalable
 - Different load configurations at different load positions on the catenary network
 - Scaling factor = No. of trains x No. of PMCF units

AC Circuit

Figure 3: AC Side Circuit of PMCF Train

DELFT, NETHERLANDS

DC Circuit

Figure 4: DC-side Circuit of PMCF Train

- Motor was not modeled
- Motor was emulated by DC power ramp-up and ramp-down
- Negative DC power represented regenerative breaking

Controller

Figure 5: PMCF Controller Block Diagram

- Based on a Simulink model representing the aggregate PMCF load
- Deviations in the dynamic behavior due to the scaling transformer had to be mitigated by retuning the controller

Runtime

Figure 6: RSCAD Runtime

Test Results

Figure 7: DC Power Reference (±6MW)

Figure 8: Power and Voltage Responses

Test Results

DC Power Reference Test – 16 trains of 10 PMCF (\pm 56.5MW)

Conclusions

- The load model was sufficient for the purpose of testing the STATCOM reactive power performance.
- Aggregated model of an actual train can represent the dynamics of the traction system than a generic PQ load model
- Successful application of RTDS in a derisking exercise of an unconventional electrical network with unconventional load behaviours.

Thank you

2024 EUROPE USER'S GROUP MEETING DELFT, NETHERLANDS

