

Black Start from Offshore Wind

Ben Gomersall

► The National HVDC Centre

2024 EUROPE USER'S GROUP MEETING DELFT, NETHERLANDS

SIF BLADE Overview

SIF BLADE: Black Start Demonstrator from Offshore Wind

Innovation challenge: *improving system resilience and robustness* (restoration from offshore wind)

• Consortium of industry TOs, ESO, OEMs, offshore wind developers, and academia – led by SP Energy Networks

DELFT, NETHERLANDS

The National

HVDC Centre

The Case for Coordinated Offshore Network Restoration

Holistic Network Design (HND)

- Published by system operator for how to connect future offshore wind
- 2030: up to 50 GW of offshore wind capacity
- 2035: up to 80 GW of offshore wind capacity

If consensus is that wind is to play an integral role in future restoration scenarios, must **explore** options to utilise the coordinated offshore network and its resources

Category	Key
New offshore network infrastructure	-
New onshore network infrastructure	-
Voltage increase on network	
Existing network upgrade	
Substation upgrade or new substation	
Substations delivered for 2030	•
In scope wind farm	♦
HND wind farm	•
Existing Network	-
Reinforcements delivered for 2030	-

Overview

DELFT, NETHERLANDS

Generic Modelling Basis

Other Workstreams in the project

- WP1: Strathclyde/SPEN looking at scenarios pertaining to P2P-AC
- HVDC-BLADE: RWTH AU looking at scenarios pertaining to P2P-DC

Our Focus

 Scenarios pertaining to DCSS-based MTDC configurations, integrating one or more offshore windfarm and onshore BESS

HND Observations

- 2 parallel connected windfarms offshore (AC)
- ... being connected via an offshore DCSS
- ... all integrated connection corridors with onshore system are DC

Generic Model

Main Modelling Limitations

- Conservative representation of cable capacitance by pi representation.
- Generalised GFM representation of wind farms as a single VSC aggregate rather than individual turbines and strings – therefore ignores local level interactions and requirements at turbine level.
- VSCs modelled as a grid-side inverter with an ideal DC source behind it behaves more like a battery and perhaps an optimistic portrayal of wind farm response times.
- Simple block load representation of demand reconnection
- Have not considered resynchronisation of independent onshore power islands

System Start Up

- 1. Offshore island: VSCs + AC assets
- 2. MTDC: MMCs, cables, DCSS
- **3. Onshore system:** Supporting generation and block loads

GC0156 Definitions: ESRS

Anchor: Generator with the ability to start-up and support reenergisation of the NETS without need for external voltage source

Top-Up: Generator not required to self-start, but can be ready to connect on instruction once external voltage source becomes available, to support demand reconnection

VSC1 DC Network Energization

- VSC1 Anchor generators
- All breakers are initially closed.
- The converters are deblocked simultaneously in the first case
- The convertors are deblocked sequentially in the second case

VSC1 DC Network Energization

HVDC Energisation Feasibility

(b) Smooth start-up, poles energised simultaneous

(c) Smooth start-up, poles energised sequentially

VSC1 & VSC2 Combined Soft Start + block loading

- VSC1 & VSC2 Anchor generators
- All breakers are initially closed.
- The converters are deblocked simultaneously
- Voltage ramped at 0.5pu/s
- Energisation of the onshore AC system and block loading

The National HVDC Centre

Time	Event
t=1.2s	VSC1/ VSC2 deblocked simultaneously
t=1.8s	VSC1/VSC2 $v_{ac}^{ref} = 0 \rightarrow 1pu \ (0.5pu/s)$
t=4.25s	MMC3 pos pole deblocked $v_{DC}^{ref} = \overline{2}V_{LL}^{ac}$
t=4.5s	MMC3 neg pole deblocked $v_{DC}^{ref} = \overline{2} V_{LL}^{ac}$
t=5.1–6.1s	MMC1 controlled precharging
t=6.7-7.7s	MMC2 controlled precharging
t=8-9s	MMC1 and MMC2 sequential pole deblock
t=9.2–11.2s	MMC3 $v_{DC}^{ref} = 0.6pu \rightarrow 1pu \ (0.2pu/s)$
t=12, 12.5s	MMC1 ramps $v_{ac}^{ref} \rightarrow 1pu$, Block Loading 1
t=12.5s, 13.7s	MMC2 ramps $v_{ac}^{ref} \rightarrow 1pu$, Block Loading 2

Power sharing and soft-start capability, minimised instantaneous power requirements and inrush

VSC1 & VSC2 Combined Anchor Soft Start

Conclusions

- Demonstration of MTDC coordinated restoration through various study scenarios and sensitivities
- Demonstration of HND value:
 - Support two independent onshore power islands simultaneously
 - Improved restoration speeds through higher MW capability with multiple service providers
 - Coordination of several providers for power sharing (AC-connected and DC-connected)
- Challenges:
 - PQ requirements for Bipolar HVDC schemes can be significant
 - Mitigations include sequential pole energisation, sufficient PIR sizing, soft-start, use multiple OWFs
 - Parallel OWFs providing combined Anchor service could require master control for synchronised dispatch of deblocking signals and voltage orders
 - Sequences and DC-PIR specification for start-up sequences involving DCSS

Next Steps - Network specific

Category	Key
New offshore network infrastructure	
New onshore network infrastructure	
Voltage increase on network	-
Existing network upgrade	-
Substation upgrade or new substation	•
Substations delivered for 2030	0
In scope wind farm	
HND wind farm	•
Existing Network	-
Reinforcements delivered for 2030	-

Next Steps - HIL

DELFT, NETHERLANDS

Next Steps – Master Controller design

2024 EUROPE USER'S GROUP MEETING

S

Thanks for listening. Any questions, please?

Grand For further information, please visit www.hvdccentre.com; OR email: info@hvdccentre.com/

Follow our Linkedin page **The National HVDC Centre** for regular updates.

