

Application of RTDS Simulator for Real-Time Large-Scale Power System Hybrid Electromagnetic-Transient and Phasor-Domain Simulation

Ning Lin

Ning.lin@powertechlabs.com

Powertech Labs Inc.

APPLICATIONS & TECHNOLOGY CONFERENCE 2025 CHICAGO, ILLINOIS, U.S.A.

About RTDS User - Powertech Labs

- A subsidiary of BC Hydro in great Vancouver area, BC, Canada
- Business in high power/voltage/current testing, engineering consulting, hydrogen, EV, and power system software development, etc.

Powertech Labs Campus

 Use RTDS simulator for power systems study, HIL testing, and hybrid simulation tool TSAT-RTDS Interface (TRI)

Outline

- Hybrid Simulation
- Boundary Definition
- Co-Simulation Setup
- Simulation Results

 Power system dynamics are conventionally categorized into low- and highfrequency transients

Feature	Electromagnetic Transients (EMT)	Phasor-Domain (TSA)
Sample Programs	RTDS, PSCAD	TSAT, PSS/E, PSLF
Level of details	 ✓ Three-phase instantaneous values ✓ Detailed models 	 ✓ Phasor-domain positive sequence ✓ Simplified dynamic models ✓ Network dynamics ignored
Size of modeled system	 ✓ Varies between a few to several hundreds of buses 	 ✓ Often used for simulating systems with tens of thousands of buses
Common Application	 ✓ Any types of studies that need detailed modeling ✓ Hardware-in-Loop (HIL) simulation 	 ✓ Bulk power system planning and operation ✓ On-line Dynamic Security Assessment

- Power System Modeling and Simulation Challenges
 - Can focus on either detailed models in small system or simplified models in large system
 - Increasing level of details without reducing system size can be costly
 - Study interactions between system-wide events and detailed devices can be challenging
 - Fault analysis in HVDC systems
 - Sub-synchronous resonance studies
 - $\circ~$ A detailed model might be available only in an EMT package
 - HVDC, IBR, FACTS, etc.
 - To built a full system model for EMT simulation is challenging
 - While this is a common practice in TSA studies

• Hybrid simulation approach addresses these challenges by using both EMT- and phasordomain simulation methods

- Advantages
 - o Effective in analyzing impact of low-frequency oscillations on specific components and vice-versa
 - A more cost-effective solution for studying large systems compared to full-EMT simulation
 - o Takes advantage of rich modeling library available in EMT and phasor-domain simulation packages
 - Perform hardware-in-loop simulation with a large system model

- Implementation
 - $\circ~$ Platform for synchronized simulation using EMT and TSA packages
 - System partitioned into two or multiple regions
 - EMT and TSA simulate each region independently (e.g., 50us vs 4ms)
 - $\circ~$ Injections are exchanged at the end of each TSA time-step

Outline

- Hybrid Simulation
- Boundary Definition
- Co-Simulation Setup
- Simulation Results

- Boundaries define internal and external systems
 - Size of internal system vs. existing computational resources
 - Device(s) of interest
 - Focusing on a device such as SVC, STATCOM, HVDC, renewables?
 - Simulating unbalanced faults?
 - \circ Number of boundaries
 - Should be kept minimum
 - \circ Intended fault locations
 - Cannot be too close to boundary
 - \circ $\,$ Location of harmonic sources $\,$
 - Better to be away from boundary

- Choosing Boundaries
- Based on geographical location
- ✓ In-depth knowledge about the system
- $\checkmark\,$ Typically has well-defined interfaces
- ✓ Easy to understand

- Focus on a specific device
- ✓ Can be STATCOM, HVDC, etc.
- $\checkmark\,$ A buffer zone around the device is considered
 - Electrical distance between device and external system
- $\checkmark\,$ Defining boundaries can be challenging

- Conversion of Boundary Quantities
 - Phasor-domain injection

 $\vec{I}_{TSA} = I \measuredangle \theta$

Phasor-domain to three-phase quantities

 $\alpha(t) = 2\pi f_0 t + \theta$ $i_A(t) = \sqrt{2}.I.\sin(\alpha(t))$ $i_B(t) = \sqrt{2}.I.\sin\left(\alpha(t) - \frac{2}{3}\pi\right)$ $i_C(t) = \sqrt{2}.I.\sin\left(\alpha(t) + \frac{2}{3}\pi\right)$

$$\vec{I}_B = \left(\frac{\tilde{P}_B + j\tilde{Q}_B}{\vec{V}_B}\right)^*$$

 $P_B = v_A i_A + v_B i_B + v_C i_C$

$$Q_B = v_A i_B + v_B i_C + v_C i_A$$

Three-phase quantities to phasor-domain -Energy-based technique

- Communication between boundaries on RTDS- and TSAT-side ٠
 - Use GTFPGA block and the FPGA board Ο
 - GTFPGA block supports up to 64 channels to send/receive integer/float numbers Ο
 - Each boundary needs two channels Specified by a unique port number assigned to Ο them

- Boundaries in TSAT-RTDS
- Supports single-port and multi-port boundaries
- Supports both (simple) Norton Equivalent and FDNE

METEK

Outline

- Hybrid Simulation
- Boundary Definition
- Co-Simulation Setup
- Simulation Results

• TSAT-RTDS Co-simulation Setup – Hardware

FPGA Board mounted on PCI Express slot

RTDS PB5 card connected to FPGA Board through an optical fiber

To RTDS

TSAT-RTDS Co-simulation Setup – Software •

RECAD EX 1.0

File View Launch Utili

Power System General Sources Prassive Elements Prassive Elements Transformers Instrument Transfe TLines & Cables Machines Renewables Interface Compon Power Electronics Filters Miscelaneous Controls

Controls Protection & Automation

Distribution Stretchable GPES TWRT

🗅 🖻 🖉 🖉 🗑 📖 🦂 🔍 🖳 🔛 🖬 🛄 🔄 🖄 🖾 🖳 🖄

22>

3P Fault

3P Breaker 3P Breaker v

P Breaker w/

variable

3P Fault w/ Controlled Extinguish

____ ____

3/2 Bus Connect

3/2 Bus

Q Q 57

l 🛅 🖺 👶 🐄 🗢 င

EEE/spe 1 Debelor System

1.2

🎫 Rack 1 🔹 🍌 🕨 📲 😚 📲 🗛 🌫 🔝 🕘 🦯 14 3

1541 P35

0.0001 0.0001 0.0001 0003pe 1 0.00000 5000

11

- a ×

IEE Igw1 Existen Seten

Technologies METEK

- Study Case 1: IEEE 39-Bus System
- One boundary

Handling data exchange

- Study Case 1: IEEE 39-Bus System
- One boundary

DSATools[™]/TSAT

TSAT Scenario Edit Window - Hybrid Simulation Data - Base Scenario [case39.pfb]

Hubr	rid Simulation Data		
⊒- Scenario Data			
Description			
Parameters	Optional Data		
Powerflow Data	Boundary Definition /ork\Suppor Browse		
- Dynamic Data	Data File		
- Criteria Data	Edit		
- Contingency Data			
	Lireate		
Transaction Data			
Sequence Network Data	Parameters File C:\Work\Si Browse		
PMU Data	Edit		
- Hybrid Simulation Data			
-	Create		
	Name Option 🛛 Bus Number 🗸 🗸		
Cano	cel OK		
🔚 boundary_def_Bus39-36_3l.bdf 🔀			
1 [TSAT 17.x Hybri	id Simulation Boundary]		
2			
3 {Communication I	Data}		
4 First Port Number	er = 1 ion Datal		
6			
7 {Boundary Defini	ition}		
8 Name = B1			
9 Port Number = 2			
10 Include Branch =	= 15, -16, '1'		
12 Include Branch =	= 17, -10, 11		
13 {End Boundary De	efinition}		
14	-		
15 [End]			

VWELEK.

Outline

- Hybrid Simulation
- Boundary Definition
- Co-Simulation Setup
- Simulation Results

• Study Case 1: IEEE 39-Bus System

• Study Case 1: IEEE 39-Bus System

TSAT and RTDS run simultaneously

• Study Case 1: IEEE 39-Bus System

- Study Case 1: IEEE 39-Bus System
- Four boundaries

Study Case 1: IEEE 39-Bus System, 4 boundaries ٠

Technologies VWELEK.

• Study Case 2: A practical system with 5619 buses, 854 generators*

- Boundary number: 7
- o Internal System: 25 buses, 11 generators
- o EMT: 50µs; TSA: 4ms
- o A 100ms fault @ 10s

* P. Zadkhast, X. Lin, F. Howell, B. Ko, K. Hur, "Practical challenges in hybrid simulation studies interfacing transient stability and electromagnetic transient simulations", Electric Power Systems Research, vol. 190, Jan. 2021

• Study Case 2: A practical system

• A 100ms fault @ 10s

Щ

CHICAGO, ILLINOIS

Technologies

AMETEK

Conclusions

- Hybrid RTDS-TSAT Simulation takes advantage of
 - Detailed modeling of RTDS electromagnetic transient simulation
 - Bulk power system simulation capability of TSAT
- Facilitates analyzing interactions between low- and high-frequency transients
- Real-time (hardware-in-loop) simulation of modern power systems possible
- $_{\odot}\,$ Interfacing techniques (Thevenin/Norton, FDNE) critical to keep EMT/TSA transients
- Extra hardware might be needed
- Limited number of interfaces

Thank you

Thank you

