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Controllable grid Interface
Power rating

• 7 MVA continuous

• 39 MVA short circuit capacity (for 2 sec)

• 4-wire, 13.2 kV

Possible test articles 
• Types 1, 2, 3 and 4 wind turbines
• PV inverters, energy storage systems
• Conventional generators
• Combinations of technologies

Voltage control (no load THD <1%)
• Balanced and un-balanced voltage fault conditions (ZVRT and 140% HVRT) – 

independent voltage control for each phase on 13.2 kV terminals
• Response time – 1 millisecond (from full voltage to zero, or from zero back to full 

voltage) 
• Long-term symmetrical voltage variations (+/- 10%) and voltage magnitude 

modulations (0-10 Hz) – SSR conditions
• Programmable impedance (strong and weak grids) 
• Programmable distortions (lower harmonics 3, 5, 7)
• Impedance characterization of inverter-coupled generation
• Full STATCOM functionality

Frequency control

• Fast output frequency control (5 Hz/sec)  within 45-65 Hz range

• 50/60 Hz operation

• Can simulate frequency conditions for any type of power system 

• PHIL capable (coupled with RTDS)

• Test-bed for PMU-based wide-area stability controls

• Test article impedance scan 

Less than 1 ms response time



2025 APPLICATIONS & TECHNOLOGY CONFERENCE CHICAGO, ILLINOIS

Summary of CGI#2 Specifications
Power rating

• Continuous AC rating -  19.9 MVA at 13.2kV and 34.5 KV

• Overcurrent capability (x5.7 for 3 sec, x7.3 for 0.5 sec)

• 4-wire 13.2 kV or 35.4 kV taps

• Continuous operational AC voltage range: 0 - 40 kVAC

• Continuous DC rating – 10 MW at 5 kVDC

Possible test articles 
• Types 1, 2, 3 and 4 wind turbines
• PV inverters, energy storage systems
• Conventional generators
• Combinations of technologies / hybrid systems
• Responsive loads

Voltage control (no load THD <1%)
• Balanced and unbalanced voltage fault conditions (ZVRT, LVRT and 140% HVRT) – 

independent voltage control for each phase on 13.2 kV and 34.5 kV terminals
• Response time – less than 1 millisecond (from full voltage to zero, or from zero back to 

full voltage) 
• Programmable injection of positive, negative and zero sequence components
• Long-term symmetrical voltage variations (+/- 10%) and voltage magnitude modulations 

(0-10 Hz) – SSR conditions
• Programmable impedance (strong and weak grids, wide SCR range corresponding to a 

POI with up to 250 MVA of short circuit apparent power) 
• Injection of controlled voltage distortions 
• Wide-spectrum (0-2kHz) impedance characterization of inverter-coupled generation and 

loads
• All-quadrant reactive power capability characterization of any system

Frequency control

• Fast output frequency control (3 Hz/sec)  within 45-65 Hz range

• 50/60 Hz operation

• Can simulate frequency conditions for any type of power system 

• PHIL capable (can be coupled with RTDS)

• Coupled with PMU-based wide-area stability controls validation platform

New features 

• 5 kV MVDC grid simulator (PHIL capable)

• Voltage or current source operation

• Seamless transition between voltage and current source modes

• Emulation of full set of resiliency services:

• Black start

• Power system restoration schemes

• Microgrids

• Flexible configurations are possible when combined with CGI#1:

• Two independent experiments

• Parallel operation

• Back-to-back operation

• Emulation of isolated, partially or fully grid-connected microgrids    

100 µS response time
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Type-5 Synchronous Wind
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Wind Energy Grid Integration
Type-3 and Type-4 Wind Turbine Generators play predominant roles in the modern wind 

industry : 

• Variable-speed operation for high efficiency power conversion

• Power electronics-based energy conversion, low short-circuit current contribution

• Weak grid oscillation appears more often due to replacement of SGs and the integration of IBRs

Synchronous WTGs has been around since the 1990s:

• Interface to the grid via a synchronous machine and maintaining the grid strength

• Always synchronize to the grid

• Inherently behaves as GFM resources with physical inertia

• Variable-speed operation through a hydraulic torque converter.

• Better overloading capability.

• It was not a popular choice in the 2000s for wind integration
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“Grid-Forming Wind: Getting ready for prime time, with or without inverters,”

V. Gevorgian, S. Shah, W. Yan, and G. Henderson, IEEE Electrification Magazine, 2022.

A comparison of advantages for specific turbine typesGrid-forming Wind Turbines
Type-3 DFIG WTGs

• DFIG and inverter coupled with grid.

• GFM control available through modify 

RSC’s control.

Type-4 PMSG WTGs

• Inverter coupled with grid.

• Gearbox-less WTG.

• GFM control similar to PV and BESS.

Type-5 hydraulic torque converter

• Synchronous machine maintain 

synchronism to the grid.

• Turbine variable speed operation via 

torque converter.

• Inherently as a GFM WTG

https://scholar.google.com/scholar?oi=bibs&cluster=17236740158538910154&btnI=1&hl=en
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Stability Characteristics of Sync Wind

• Comparison of frequency scan between Type III and Type 

V

Type III-GFL

GFM

Type V
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PHIL Tests of Synchronous Wind Operation
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Real-time Model of wind turbine and torque converter FC test apparatus CGI controlled by RTDS

SyncWind Torque Converter available at: https://github.com/IdahoLabResearch/Type_5_Wind_Turbine_Drivetrain

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FIdahoLabResearch%2FType_5_Wind_Turbine_Drivetrain&data=05%7C02%7CWeihang.Yan%40nrel.gov%7C74aafc4db7c0457d036308dd86728a60%7Ca0f29d7e28cd4f5484427885aee7c080%7C0%7C0%7C638814548697938442%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=U2QNPjjaPFRAFp5c6kQ%2FjLrukBMil6%2FtkX%2B5THMi13I%3D&reserved=0
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Hydraulic Torque Converter

[1] Juan F. Gallego-Calderon, “Electromechanical Drivetrain Simulation”, Dissertation (2015).
[2] Hrovat et al. “Bond Graph Modeling and Computer Simulation of Automotive Torque Converter”,(1985).

Image Source: [2]
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SyncWind Testbed with Torque Converter Model

• CGI is maintaining the SG’s speed when Type-5 wind is operating in power control model.

• Type-5 wind can be switched to speed control model for islanding operation, in conjunction with load bank. 

RTDS sending torque 

reference, and taking 

speed and voltage 

feedback from SG
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SyncWind Operation with Torque Converter Model



2025 APPLICATIONS & TECHNOLOGY CONFERENCE CHICAGO, ILLINOIS NREL    |    16

SyncWind under Variable Wind Condition

SG

Torque 

converter 

variables

Electrical 

variables

CGI Bus

Wind rotor 

measurements
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SyncWind Grid-forming/supporting Controls
• Frequency droop control • Islanded operation under variable wind • Islanded operation under variable load
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SyncWind Grid-
forming/supporting Controls

• LVRT of SyncWind with/without torque limiter

• Phase jump of SyncWind
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PHIL Tests of SyncWind Oscillation Damping
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WindSG Power Modulation

• Active power modulation for interarea oscillation damping

– No wind curtailment, ΔPd will use kinetic energy in wind rotor.
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• Reactive power modulation for interarea oscillation damping

– Use typical PSS model, modulate reactive power through adjusting SG field voltage.
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SyncWind Interarea Oscillation Damping

• Area 1 damping unit: 36MW SyncWind plant

• CGI emulates the Bus 7 behavior of the Kundar two area model simulated in RTDS.

• 36MW WindSG wind power plant is integrated in the over 2.5GW system. 
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Wind speed = 12m/s Wind speed = 10m/s Wind speed = 9m/s

Fault at Tieline

Load step

Load trip

• Active Power Modulation



2025 APPLICATIONS & TECHNOLOGY CONFERENCE CHICAGO, ILLINOIS NREL    |    23

~2Hz 

machine 

natural mode

Torque upper 

limit at 2%

• Full power output with frequency drop • Full power output with frequency surge

Torque lower limit

• Lower power output with frequency drop
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SyncWind Torque Converter 

Simulated in RTDS under Tie-line 

fault, wind speed = 12m/s
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SG Natural Oscillation Mode
• 2MW SG Torque to Power Bode Plot

SG with AVRs

AC4A, AC7B, ST2C

SG without AVRs

H~= 1.9s

PSCAD Model scan 

of 2MW SG
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Impact of Frequency Measurement Bandwidth

Sim vs PHIL graphs 

shows that PHIL had 

large phase shift in WT5 

controls due to slow PLL 

used for initial frequency 

measurements
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Fault at Tieline

Small load steps

Kd=2 pu Kd=4 pu

Large load steps

• Reactive Power Modulation
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SG Voltage and Field Current Measurements

• Q modulated damping adjusts Bus 7 voltage based on frequency oscillation and further 

changes the power of the resistive load to provide oscillation damping.

• SyncWind plant’s active power is not impacted in this damping case.

• Its effectiveness depends on system load condition. 

2Hz oscillations in active 

power are more visible with 

higher Q damping gain
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PHIL PSS Compensator Tunning
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Summary

• Modern power systems face a completely different scenario than the 

one 20 years ago, and such shift raised awareness of enhancing grid-

strength under various energy mix.

• “WindSG: Wind power as a real Synchronous Generator” developed 

and tested a high-fidelity model of a Type 5 WTG in the PHIL setup 

using a 2-MW SG driven by a 2.5-MW dynamometer. A Type 5 

WTG offers a unique GFM solution to address many grid integration 

and grid strength problems by keeping the grid synchronous. 

• RTDS plays a critical role in implementing the governor/hydraulic 

torque converter of the SyncWind and further carried out PHIL 

demonstration on SyncWind operation and oscillation damping. 
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