Frequency Scan and Stability Analysis Tool (FSAT)

- Heather Meiklejohn
- RTDS Technologies Inc.

APPLICATIONS & TECHNOLOGY CONFERENCE 2025 CHICAGO, ILLINOIS, U.S.A.

OVERVIEW

- Frequency Scanning always been achievable on the RTDS
- Automated all operations and combined into FSAT Tool
- FSAT Tool
 - Frequency Scanning Impedance Analytical Method Extraction Measurement Based Method Stability Analysis Analytical Measurement

- Applications
 - Network Validation with different software platforms
 - Resonant frequency
 - Frequency dependent transmission line impedance
 - FDNE source
- Single phase components are not supported

 Determine the +/-/O zero sequence of a frequency dependent transmission line

- Select 'Open FSAT' icon from toolbar
- Select 'Open FSAT' from the

menu

Simulation does not need to be running

2025 APPLICATIONS & TECHNOLOGY CONFERENCE

- Run the Frequency Scan
 - Select Bus
 - Frequency range
 - Output file name
 - Calculate Response

• Calculations

- Admittance matrix of the network YBUS
- Kron reduction technique used to solve
- Compute impedance as seen from BUS
- Select domain
- Select to output phase impedance

- Results Viewer
 - Select the output filename
 - Zoom in

RESULTS VIEWER

- .fscn file contains the data as shown on the GUI in DQ format
- Click on the name of the frequency scan file, additional menu options
- Export Data to different file formats and different domains
- Load other scan results and compare

2025 APPLICATIONS & TECHNOLOGY CONFERENCE

- Analytical scan does not take into account operating conditions such as controls or states of power electronic switches
- Black boxed controls
- Measure voltage and current at different frequencies
- Calculate impedance Z=V/I
- For efficiency, the frequency bandwidth of interest can be split up into sub-ranges and a harmonically rich signal injected (multi-sine)
- DFT used to extract the frequency response

- Component named _rtds_FREQSCAN_meas.def generates the perturbation signal
- Three types of frequency scan supported
 - 3Phase AC (DQ0,PN0,+/-/0)
 - Two Phase AC/DC networks
 - Controls

- Component must reside in main step
- Select where the perturbation signal is being applied
- Enter the voltage and current at the bus
- Frequency accurately match system

	CONFIGURATION	Name	Description	Value	Unit	Min	N
		Vbase	Injection Base (e.g., L-L RMS Voltage)	380.0		1e-6	1000
l	DQ/PN/+- IMPEDANCE SCAN	FO	Fundamental Frequency in the DQ0 Transformation	50.0	Hz	1.0	200.
	AUTO-NAMING SETTINGS	enPLL	Enable Internal PLL to Calculate Frequency	No	•		
		la_mea	Measured Phase A Current	IAP1_F			
		lb_mea	Measured Phase B Current	IBP1_F			
		lc_mea	Measured Phase C Current	ICP1_F			
		Va_mea	Measured Phase A Voltage	N1_F			
		Vb_mea	Measured Phase B Voltage	N2_F			
		Vc_mea	Measured Phase C Voltage	N3_F			
		PWR_SGN	Signal Measurement Source	Substep	-		
		DelayVI	Delay Input Signal to align V & I		-		
		Dt_small	Delay (Small) Timestep Size	2.5	us	0	15.0
		PIPG	PI-Regulator Proportion Gain	50.0		0.0	1000
		PIIT	PI-Regulator Integral Time Constant		sec	1.0e-6	1000
		Ft	PLL Filter Time-Constant	0.0015	sec	1.0e-6	1000
		Ftout	Filter Time-Constant of Output Frequency	0.0015	sec	1.0e-6	1000
		nFreq	Internal Frequency Measurement Signal	FreqMeasureBus	Hz		

Inject either current or voltag

Substep

- 3Phase AC scan
 - Pertubation signals DQ
 - Transformed to phase
 - Sampled
 - Transformed DQ
 - DFT

$$Z_{dq0} = \begin{bmatrix} Z_{dd} & Z_{dq} & 0 \\ Z_{qd} & Z_{qq} & 0 \\ 0 & 0 & Z_0 \end{bmatrix}$$

Impedance Matrix Form

- Perturbation: AC source
- Input: Current into the MMC
- Output: PCC voltage
- Calculated: Impedance of the MMC (dq0 domain)

Closed-loop transfer function

Open-loop transfer function

 $Tf(\omega) = Gac(\omega) * Zmmc$

At frequency ω_1 , open loop eigenvalue $\lambda c (\omega_1)$

Current injection 0.1hz step, size 0.02% (base 230 kA), 25 per subrange

2025 APPLICATIONS & TECHNOLOGY CONFERENCE

Stability Boundary

- $Mag[\lambda c(\omega_1)] = 1 \rightarrow Phase Margin$
- $Phase[\lambda c(\omega_1)] = 180 \text{Deg} \rightarrow Magnitude Margin$

@5.6hz. gain margin = 9.79

• Type (Scanned Data/Series RL / Transfer Function)

FSAT Tool

- Important Points
 - Ensure the simulation is running at desired operating point
 - Plot the voltage and current at the PCC bus observe any instabilities or noise
 - Adjust scan parameters if required
 - Stability analysis in the same frequency range and increment

FSAT Tool

- Synthesized Responses tab
 - Verifying network equivalents
 - Scan network equivalent
 - Load scan results and compar

FSAT Tool

- Future Developments
 - Automation
- Example Casesl14 Impedance Scan
 - Frequency Scan (analytical)
 - Harmonic Scan (measured)

