

# Recent PHIL Testing at CAPS

Harsha Ravindra

Center for Advanced Power Systems, Florida State University, Tallahassee





**APPLICATIONS & TECHNOLOGY CONFERENCE 2025** CHICAGO, ILLINOIS, U.S.A.



# Outline

- CAPS Overview
- PHIL testing of
  - Diesel Generators
  - Energy Magazines
  - Islanded Microgrids







### Center for Advanced Power Systems @ FSU



Established in 2000





- Spun off from **NHMFL** in **2000**
- Research and education related to application of new technologies to electric power systems
- Closely affiliated with FAMU-FSU
  College of Engineering
- 56,000 ft<sup>2</sup> laboratories/offices; CUI data **security compliant**
- Tenure/Non-tenure track faculty,
  Ph.D./M.S./B.S. students, staff
  researchers and post-doctorial
  associates and facility support



- Over \$105 million specialized power and energy capabilities funded by ESO, ONR, DOE, NSF and Industry
- Manager of the ONR funded Electric Ship Research and Development Consortium (ESRDC)

Rotating Machinery

MVAC/IVDC

• Contracted by **PEO Ships PMS460** to derisk the DDG(X) Power System and conduct HIL based demonstrations and DT&E of advanced P&E technologies supportive of multiple ship classes







MVDC and

MVAC PHIL Lab



**National High** 

Lab (NHMFL)

Power

**Electronics** 

& HV labs

**Magnetic Field** 

### **Clients and Collaborators**



### Power Hardware-in-the-Loop (PHIL) Simulation

- Create a Virtual yet Realistic Environment to Rapidly Test and Demonstrate Equipment and Interfaces.
  - Couple Device Under test (DUT) to a Real Time Computer Simulation using amplifiers and/or actuators, preserving natural coupling

Use of PHIL Simulation

- Testing in Realistic Environment
- Early integration testing
- Flexibility to quickly change surrounding system and conditions to test equipment performance envelope
- Validate System Specification & Interfaces
- Testing with yet unrealized system
- Test extreme conditions within controllable







CHICAGO, ILLINOIS





# **5 MW PHIL Facility Overview**



#### Recent PHIL Testing Highlights at FSU-CAPS



METEK



•

•



### Load Ramp Tests



- Probing for limits: constant power load ramp rate of 0.5 pu/s caused by RTS based protection (current trip)
- Same setting feasible with constant impedance load



### 75% Block Load – Step Up



Load bank based testing inadequate to emulate data center loads

#### Testing 200 MJ Energy Magazine (EM) for Shipboard Systems

- DC PHIL Interface
  - Emulated pulsating mission loads and parallel PCM
  - DIM-IT IA
  - Used 2.5 MW, 1 kV DC amplifier
- AC PHIL Interface
  - Emulated generators and ship service loads
  - DQ-frame DIM-VT IA
  - Used 2.5 MW, 4.16 kV amplifier
- Studied voltage distortion, modulation, and disturbances in AC system
- Studied variety of DC load profiles (representing different types of loads)
- Gathered characterization data for modeling and model validation



#### Directing the Future of Ships Power WARFARE CENTERS Philadelphia

Electric Ships Office





NAVS









# Testing of Energy Storage in Limited Inertia Systems

#### **MITSUBISHI** HEAVY INDUSTRIES

- Model of Interest (MOI)
  - All components and controls, excluding the energy storage media
  - Executed on real-time simulator using 50 µs time-step size
- Hardware of Interest (HOI)
  - Battery module
    - 45 Ah
    - Air cooled
    - 28 V nominal terminal voltage
  - Ultra-capacitor module
    - 53 F
    - Water-cooled
    - 170 V nominal voltage
- PHIL Interfaces





# **PHIL Interfaces**



# PHIL Simulation Experiments: Baseline Scenario

- Loading profile intended to test system in several modes of operation
- (0 s < *t* < 50 s) Base loading
- (50 s < *t* < 100 s) Pulse loading
  - Capacitor supplies load pulsations
- (100 s < t < 150 s) Battery supplements support of DC load</li>
  - Total load exceeds generator capacity
- (150 s < t < 200 s) Battery fully supports DC load
  - AC load at generator capacity
- (200 s < t < 250 s) Battery supports DC load and supplements support of AC load
  - AC load at 120% of generator capacity
- (250 s < *t* < 300 s) Load pulsations cease
  - Battery supplied DC base load and supplements support of AC load
- (300 s < t < 350 s) Battery supports DC base load</li>
- (350 s < t) Battery recharges</li>







# **Results from PHIL Simulation Experiments**

- Generator loading approximately held constant (near full load)
- Capacitor SoC generally maintained between 60% and 80%
- Voltage and current levels maintained within normal bounds



200

(c) State-of-Charge

Time (s)

300

400















40

0

100



1.5



# Thank You











Contributions: IEEE 2004-2025 Recommended Practice for Hardware-in-the-Loop Simulation

- Michael "Mischa" Steurer pioneered HIL and initiated IEEE WG P2004. Developed general linear formulation of PHIL experiment
- Collaboration: PSRC WG CTF-33; IEEE task force (TF) on "Real-Time Simulation of Power and Energy Systems", chaired by Dr. Omar Faruque, under IEEE WG 15.08.09 (within the General System Subcommittee of the IEEE PES T&D Committee)
- Sponsor: PELS, Co-sponsor: IAS, IES
- CAPS led one of the chapters (Execution of PHIL Experiments)
- CAPS members made substantial contributions to multiple chapters and annexes







APPLICATION Society





2025 APPLICATIONS & TECHNOLOGY CONFERENCE

# High Speed Generator for Air Force Application

- Tested 2 MW high speed generator
- Used 5 MW dynamometers and high speed gearbox for 14,000 rpm interface
- Used high-speed diode rectifier at AC terminals of generator
- DC PHIL interface
  - ITM-IT IA
  - 2.5 MW, 1 kV DC amplifier
- Verified operation of the generator at full power
- Tested with constant-current ramp loading

Langston, J., et al. "Megawatt Scale Hardware-in-the-Loop Testing of a High Speed Generator." 2012 ASNE



