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Outline
• Linear Analysis of Multi-Phase PHIL Experiemnts
• PV-DIM and its application
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• PHIL experiment analysis is typically 
specific to case study and PHIL interface 
algorithm being used 

• Most multi-phase PHIL experiments are 
conducted without proper assessment of 

• Stability
• Accuracy 
• Sensitivity

• Advantages / Uses
• Single framework that allows for probing of 

various IAs for an experiment
• Challenges

• Properly represent the transfer functions 
needed within the linear analysis framework

Same PHIL experiment analyzed differently due to 
two different IA used

ITM - IA

DIM - IA

Motivation for Linear Analysis Framework
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DC 
Amplifier

Power Hardware-in-the-Loop (PHIL) Simulation

4

• Virtually interface power hardware of 
interest (HOI) to model of interest 
(MOI)

• Use power amplifiers and/or 
actuators in PHIL interface

• Advantages / Uses
• Facilitates early integration testing
• Flexibility to easily change surrounding 

system
• Test extreme conditions in controlled 

laboratory environment
• Challenges

• Delays in PHIL interface can adversely 
affect accuracy and stability HOI AC 

Amplifier

Measurements

RTS

Referenc
e Signals

Referenc
e Signals

HOI AC 
Amp

DC 
Amp

G

PHIL InterfacePHIL Interface

RTS
Power 

Hardware RTS
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Linear Analysis Framework Using ELA for Single Phase PHIL System
5

• Extended Lawrence Architecture is applied as general 
framework for linear PHIL IAs

• Stimuli represented as Thevenin equivalent circuits
• Stimuli references formed from linear combination of 

observable quantities
• PHIL IA defined by 8 ideal “gains” and two Thevenin 

impedance characteristics (ZR and ZF)

Example PHIL Simulation Employing IA of ELA 

MOI HOI

Gsys – Mapping from inputs and stimuli to observable 
quantities
Gint – Represents PHIL interface
Gm – Effect of voltage and current sensors
GIA – IA gains
Gstim – Effects of amplification and stimulation injections
dm – Noise at sensors measurements
damp – Disturbance introduced through amplifier
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Linear Formulation for Multi-Phase PHIL Interfaces

6
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Linear Formulation for Multi-Phase PHIL Interfaces

7

Evaluation of Accuracy

Evaluation of Sensitivity from measurements to observable quantities

Evaluation of Sensitivity from amplifier disturbance to observable quantities

Evaluation of Stability

ELA Gains of Existing PHIL IAs for Single-
Phase PHIL Experiment
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Transfer Function from Input Voltage (VA_d/q) 
to Observable Quantities (V_d/q, I_d/q)

8

PHIL Implementation of the Ideal Experiment

• Symbolic expressions are not intuitive to analyze without 
simplifications

• Numerical analysis using symbolic expressions in FD are matched to 
TD simulations

• Resistive-Inductive DIM-VT 
Stability Analysis
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• Frequency domain analysis conducted using 
Matlab

• Time-domain analysis conducted using RTDS

Example Application for System Using DQ-Frame PHIL ITM IA
17 May 20259
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Time-Domain PHIL IA Implementation
17 May 202510
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Time-Domain PHIL IA Implementation on RTDS

11
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Evaluation of Stability

12

Stability criteria with following simplifications
• All actuation measurement delays represented as Td
• Within the controllable bandwidth, ZAmp = 0

TdAmp (µs) Freq. Domain Time-domain

150 0.31 0.31

250 0.29 0.29

300 0.28 0.28

500 0.27 0.27

𝑍𝑍𝐴𝐴
𝑍𝑍𝐵𝐵

 Ratio for Benchmark System to Reach Instability

TdAmp = 150 µs   TdAmp = 250 µs                       TdAmp = 500 µs  
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Evaluation of Accuracy
17 May 202513

Ideal PHIL              IA MOI (Digital) Side               IA HOI (Hardware) Side
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Phase Angle Accuracy Evaluation

14
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Phase Angle Accuracy Evaluation

15

As the amplifier delay increases, the phase angle between voltage and current increases at the MOI which leads to accuracy 
issues with the PHIL experiment

Phase Angle at the MOI for Different Amplifier Actuation Delay 
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Filtering frequencies above and below fundamental
Improving Stability of PHIL Experiment

16

• Consider ITM-VT IA for RL benchmark system 
• For certain PHIL experiments to maintain 

stability, filtering of the feedback current is 
required

• The digital side current reference IR-ref is 
filtered using a first order filter for both ‘ABC’ 
and ‘DQ’ implementations

• Plots showing instantaneous waveforms for 
Phase A currents or voltages at either the 
MOI or the HOI 

‘ABC’ Frame IA Implementation        ‘DQ’ Transformation IA Implementation
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Conclusion

17

• Linear analysis framework for PHIL 
experiments is applicable to multi-
phase PHIL systems

• Although analytical expressions for 
stability and accuracy seem 
complicated, FD and TD simulations 
can be used for verification

• A practical example of application of 
linear analysis framework for three-
phase PHIL experiment was 
demonstrated [1].

[1] S. Ishiguro, J. Langston, K. Watanabe, H. Lopez, Y. 
Izumida, and I. Barnola, “Using power hardware-in-the-loop 
simulation to explore uninterrupted power service of a 
converter for microgrid,” in IECON 2024 - 50th Annual 
Conference of the IEEE Industrial Electronics Society, 2024, 
accepted for publication
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Partial-Virtual DIM Interface Algorithm
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Challenges with DIM IA

19

• Requires matching Z* to ZB over 
the full frequency range

• Requires measurement of ZB 
• May need to adapt Z* to changes 

in ZB
• May be difficult to represent ZB 

through network of passive 
components

• Controls for power electronic 
converters can arbitrarily shape 
impedance in lower frequency 
range

• Constant power loads and power 
converters often exhibit negative 
resistance (i.e. 180 degree phase 
angle) at low frequency

VR
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+

-

HOI 
Stimulus

MOI StimulusMOI HOI

ZA

VA

ZBID

VD

IH
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VBIR
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Motivation for PDIM and PVDIM 
IAs
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Virtual DIM IA

20

• Do not explicitly represent Z* with 
passive elements

• Represent effect of Z* through 
voltage drop

• Represent Z* through transfer 
function applied to IH

• (+) Not limited to representation 
as passive network

• (-) Delay in stimulus can distort 
the impedance at high frequency

DIM

Virtual DIM (VDIM)
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Partial Virtual DIM IA

21

• Represent Z* through combination 
of explicit passive elements (Ze

*) and 
virtual impedance (Zv

*)
• Use Zv

* to represent impedance in 
the low frequency range

• (+) Flexibility to represent arbitrary 
transfer function

• Use Ze
* to represent impedance in 

the high frequency range
• (+) Avoids issues with delays in stimuli
• (+) Typically, high frequency range is 

dominated by passive elements

DIM
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General Framework for Linear PHIL IAs

22

• Stimuli represented as 
Thevenin equivalent 
circuits

• Stimuli references 
formed from linear 
combination of 
observable quantities

• PHIL IA defined by 8 
ideal “gains” and two 
Thevenin impedance 
characteristics (ZR and 
ZF)
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Example PHIL System

23

• Large source impedance to present stability 
challenge

• Negative resistance in series with parallel 
RLC for HOI impedance

• Delays
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Example PHIL System:  IA Damping Impedance 
Characteristics

24
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Linear Analysis of PHIL Experiments

25

Actual ELA Gains (From Ideal Gains)

Transfer functions 
describing stability, 

accuracy, and sensitivity to 
disturbances
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Assessment of Accuracy:  Transfer Function 
Magnitude Error

26
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magnitude error

• PVDIM generally shows 
lower magnitude error in 
high frequency range
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Conclusion

27

• DIM IA is often employed for PHIL systems 
posing stability challenges

• VDIM and PVDIM can offer additional 
flexibility in representing Z* for the DIM IA

• Flexibility can be even more important for 
multi-phase PHIL IAs (e.g. DQ-frame 
implementations)

• PVDIM can offer improvements over VDIM if 
Z* can be partitioned
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Practical Application of PVDIM 
28

AC amp 
(Egston)

DC amp 
(Egston)

System of Interest

PHIL & CHIL Testing

• When DG trips, impedance rapidly switches from low impedance of DG to high 
impedance of loads

• Simultaneously, battery inverter switches from high impedance to low imepdance
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Practical Application of PVDIM 

Interface Algorithm Block Diagram

ITM – VT Interface algorithm used when DG is online
PVDIM – VT Interface algorithm used when DG trips
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Thank You
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