SIEMENS COCGY

Use of RTDS in executing HVDC & FACTS Projects

Devendra Kumar

Siemens Energy

APPLICATIONS & TECHNOLOGY CONFERENCE 2025 CHICAGO, ILLINOIS, U.S.A.

Siemens Energy

As an integrated energy technology company we support our customers along the energy value chain

100,000 dedicated employees

in 90 countries

Low- or zero-emission power generation

- > Gas Services
- Siemens Gamesa Renewable Energy

Transport and storage of energy

> Grid Technologies

Reducing GHG emissions and energy consumption in industrial processes

> Transformation of Industry

SIEMENS Chcrgy

HISTORY

VSC references

									N	o Commissioning	Project name	Country	Power rating
ICC references									01	2010	Trans Bay Cable	USA	400MW
LCCTETETETETES										2015	BorWin2	Germany	800 MW
										2015	HelWin1	Germany	576MW
											HelWin2	Germany	690MW
No.	Commissioning	Project name	Country	Power rating	No.	Commissionin	ng Project name	merien	ce and	2015	Interconnection Baixas - Santa Llogaia for INELFE	France Spain	2 x 1,000 MW
02	1973	Acaray	Paraguay	55 MW	25	2010	unding	experie		2015	SvlWin1	Germany	864MW
03	1983	Dürnrohr	Austria	550 MW	26		and-stanume	i octs:		2019	BorWin3	Germany	900MW
04	1984	Poste Châteauguay	Canada	2 x 500 MW	or	n our u		rojecce		2019	Cobra Cable	Denmark -Netherlands	5 700MW
05	1987	Virginia Smith	USA	build U	יטק	10	CUCCESSICE			2019	Nemo link	UK -Belgium	1.000 MW
06	1989	Gezhouba – Nanqiao	Chir We	3 Duries		orous	Succ			2020	AI FGrO	Belgium Germany	1 000 MW
07	1993	Etzenricht	Gern	n	um	010			a realized		Pugalur - North Thrissur	Doigiann Coonnaing	
80	1993	Wien-Suedost	Aus					project	5100.	021	(DK2000)	India	2 x 1,000 MW
09	1995	Reconstruction	US				- TIVL			122	elect ink	LIK -France	1.000 MW
10	1995	Welsh 1995/2017	USA			on '				022	Johan Sverdrup Phase 2	Nonway	200M\\/
11	1997	Celilo 1997/2004	USA	- Korl	5 t I	nan	-ridwide		TACTS	2022	DolWin6	Gormany	200MW
12	2000	Tianshengqiao – Guangzhou	China				WOLLOW	when 10	O FACIO	2025	Viking link	UK Dopmark	1.400MW
13	2001	Moyle Interconnector	United King					more than	1,000 14	2025	Attion Croto	Groopo	1,40010100
14	2001	Thailand-Malaysia	Thailand – Mal					Canada	1,000/2 1	2025	Autoaroneie	Greece	500 MM
15	2003	and Upgrade	India				ungramara BtB Block 1/2		18	2023	Greeniink	OK -Ireland	
16	2004	Guizhou – Guangdong	China				(2013/2018)	Bangladesh	2 x 500 19	2025	BOIVVINO Cuprise Wind	Germany	900WVV
17	2005	Lamar	USA		39	2018	HVDC Brazil	Brazil	4,000 - 20	2025	Sunnse Wind	USA	1,080 MVV
18	2006	Basslink	Australia	500 MW	40	2021	Vindhyachal BtB Block - 1 & 2	India	2 x 250	2026	SuedOstiink	Germany	2,0001/11/
19	2007	Neptune RTS	USA	660 MW		2022	returbishment	11.15.1121.1	2,200	2027	ULIRANEI	Germany	2,0001/11/1
20	2008	Guizhou – Guangdong II	China	3,000 MW	41	2022	Western HVDC Link	United Kingdom	2,200. 22	2027	ULIRANEI A-Nord	Germany	2.000MVV
21	2009	Yunnan – Guangdong	China	5,000 MW	42	2022	Ethiopia Kopya HV/DC	United Kingdom	2 x 254 23	2028	Suedlink DC3	Germany	2,000MW
22	2010	Xiangjiaba – Shanghai	China	6,400 MW	43	2023*	Interconnector	Ethiopia - Kenya	2,000; 24	2029	LS Power	USA	1000MW
23 2010 Ballia – Bhiwadi India 2,500 MW							nrovimately		25	2030	Tennet	Germany	2,000MW
					app	. oxiniticity			20	2030	Amprion	Germany	2,000MW

Software Development Lifecycle

Validate of SW and/with HW at the earliest possible stage

2025 APPLICATIONS & TECHNOLOGY CONFERENCE

METEK

Project Process HVDC

Benefits of testing the control and protection system at the HVDC Test Center:

- Experts available at the HVDC test center.
- Shorter commissioning times at site
- Risk of malfunction minimized
- Selected cases are benchmark for on-site tests

Simulation Systems – main responsibilities of RTDS Team

- Setup and Operation of in-house Real Time Simulation Systems
- Software Engineering for Real Time Simulation
- Engineering and Testing Support during Factory Acceptance:
 Functional Performance Test (FPT) &
 Dynamic Performance Test (DPT)
- Replica for HVDC / FACTS Applications
- Validation of RTDS Models against RMS or Offline EMT (Windparks, STATCOM, HVDC, AC Equivalent, Matlab Simulink, PSCAD)

HVDC basic Setup (HIL)

Interfacing **Devices**: Knick Amp. PA2005 Amp. Omicron TESSI MMS SIM

IIIRT

Technologies

AMETEK

Real-Time Simulation RTDS modelling

Functional & Dynamic Performance Test using RTS

- Factory System Test specification defines all tests and targets for the required performance
- Tests under normal system conditions including redundancy performance
- Tests under extreme AC and DC system conditions -> dynamic performance
- Off-site testing is the final quality gate for the C&P systems before delivery to the customer

Control Trainings Simulator (CTS) – Study **Replica** /TNA T73-TD01-AF01-UH05 RT73-TD01-AF01-UH06 #RT73-TD01-AF01-UH07 #RT73-YC01-XF01-UH05 #RT73-YC01-XF01-UH0 nmunication Sys (Station A+B)

#RT73-YC01-XF01-UH0

#RT73-AK02-GF51-UH0

Substation Simulation

Thank Your

٠

Torsten Timm | SE GT GS CP STU ST3 13 © Siemens Energy, 2023

•

2023-03-10