

Powertech

The Power of Trust. The Future of Energy.

Practical Application of Co-Simulation Studies

Xi Lin, Director, Power Systems Xi.Lin@powertechlabs.com

May 2019

Denver, Colorado

Background

- o EMT Simulation Software
 - Three-phase, detailed component model
 - Typically a small region of the system is modelled
- o TSA Simulation Software
 - Phasor-Domain, positive sequence models
 - Simulates tens of thousands of buses
 - Planning and operation of bulk power system
- Challenge

- Gap between application of EMT and TSA
- How to represent the large external system in EMT simulation?

- Co-Simulation Studies
 - Platform for synchronized simulation using EMT and TSA
 - System partitioned into two or multiple regions, each region simulated by EMT or TSA
 - EMT and TSA run in parallel
 - Injections (responses from the other region) are exchanged at the end of each TSA time-step (typically a few milliseconds)

- Sample Applications of Co-Simulation Studies
 - Hardware-In-Loop (HIL) testing with much larger portion of the system
 - E.g. Testing out-of-step relays, wide area control scheme
 - Impact of low-frequency oscillations on specific devices and vice-versa
 - E.g. HVDC and FACTS devices
 - Access to modeling library of both EMT and TSA simulation packages
 - E.g. Many detailed renewable models available only in EMT packages
 - EMT studies with various system operating conditions
 - It is relatively easier to maintain large number of system snapshots in TSA

TSAT-RTDS Interface (TRI)

- A tool for performing hybrid simulation studies
 - Small region of system modeled in RTDS, rest of system modeled in TSAT
 - Jointly developed by Powertech, KEPCO and Yonsei University
- TRI is developed with special focus on practical aspects to
 - Make the tool user-friendly
 - Minimize co-simulation case setup efforts
 - Simplify results analysis steps

- System separated into multiple regions
 - Each region is modeled in either TSAT or RTDS
- Synchronized, and real-time simulation
 - 1-second of simulation takes 1 second in both TSAT and RTDS
- Injections exchanged through a FPGA board

- Powertech has worked with New York Power Authority (NYPA)
- TRI is used in NYPA's AGILe lab
- Co-Simulation cases have been developed
- High-level summary of Co-Simulation case setup is discussed

- Hard real-time simulation requirement limits the size of the system model
 - RTDS can normally handle a model with hundreds of buses, depending on hardware size
 - TSAT can simulate a system with ~10,000 buses, with decent hardware (e.g. a PC with Intel® Core[™] i7-8700K Processor)
- Eastern Interconnection system planning case has over 80,000 buses
 - Such large system cannot be simulated in real-time using TSAT
- Dynamic reduction was required when preparing the co-simulation cases for NYPA

Co-Simulation Case Setup – Dynamic Reduction

- o Objectives
 - Reduce the East Interconnection planning case to less than 10,000 buses
 - Retaining low-frequency oscillation characteristics of the external system
- Approach
 - NYISO system reduction
 - Retain all high voltage network (230kV and up) and most of 138kV network
 - External system reduction
 - Identify low-frequency modes with large participation from NYISO generators
 - Aggregate coherent generator groups using DYNRED software

Co-Simulation Case Setup – Dynamic Reduction

• End results

The Power of Trust. The Future of Energy

- A reduced system with ~5,500 buses was created
- Selected contingencies used for benchmarking

- Next step: Identify the boundaries between RTDS and TSAT
- Multiple co-simulation cases were setup
 - Model a power plant in RTDS (10 boundary ports between RTDS and TSAT)
 - STATCOM case study (2/6 ports)
 - Model a large region of New York state grid in RTDS (6 ports)
- The STATCOM case is discussed here

- A STATCOM in highly meshed region modeled in RTDS
- Rest of system simulated in TSAT
- STATCOM model tested in a small RTDS region first, then tested in a large RTDS region (co-simulation case #3)

o RTDS case created next

Co-Simulation Case Setup

- STATCOM represented by an Average Value Model (AVM)
 - Modeled provided by RTDS Technologies to NYPA

Simulation Results – Verifying RTDS Model

- RTDS case started
- TSAT initialized from powerflow condition, running in Standby mode
- Mismatch between RTDS model and powerflow solution monitored
- Start TSAT simulation once the mismatch is small enough

• Test 1 – STATCOM Step Response

Simulation Results – Adding POD

- Test 2 Power Oscillation Damper
 - A POD added to the STATCOM controller
 - POD input: frequency measurement of one of buses in the TSAT region
 - Sent to RTDS via available channels on the FPGA card
 - Focus on proving concept instead of tuning POD parameters

Simulation Results - Adding POD

Exchanging Control Signals between RTDS and TSAT

• TSAT sends signals to RTDS

RTDS sends signals to TSAT

- Similar concept may be used for simulation of other schemes
 - E.g. wide-area protection/control, PMU applications

	_rtds_GTFPGA.def		
CONFIGURATION	To GTFPGA	From GTFPGA	
Name	Description		Value
numVarsToGTFPGA	Number of Variables sent from RTDS to GTFPGA		12
out1	Name of output word #1 to GTFPGA		RTDSCtrl
SetTypeToGTFPGA1	Select Data format to GTFPGA		Int 💌
out2	Name of output word #2 to GTFPGA		ToTSAT11
SetTypeToGTFPGA2	Select Data format to GTFPGA		Float 💌
out3	Name of output word #3 to GTFPGA		ToTSAT12
SetTypeToGTFPGA3	Select Data format to GTFPGA		Float 💌
out4	Name of output word #4 to GTFPGA		ToTSAT21
SetTypeToGTFPGA4	Select Data format to GTFPGA		Float 💌
out5	Name of output word #5 to GTFPGA		ToTSAT22
SetTypeToGTFPGA5	Select Data format	to GTFPGA	Float 💌
out6	Name of output word #6 to GTFPGA		ToTSAT31
SetTypeToGTFPGA6	Select Data format to GTFPGA		Float 💌
out7	Name of output word #7 to GTFPGA		ToTSAT32
SetTypeToGTFPGA7	Select Data format to GTFPGA		Float 💌
out8	Name of output word #8 to GTFPGA		ToTSAT41
SetTypeToGTFPGA8	Select Data format	to GTFPGA	Float 💌
out9	Name of output wo	rd #9 to GTFPGA	ToTSAT42
SetTypeToGTFPGA9	Select Data format	to GTFPGA	Float 💌
out10	Name of output wo	rd #10 to GTFPGA	fgen1
SetTypeToGTFPGA10	Select Data format	to GTFPGA	Float 💌
out11	Name of output word #11 to GTFPGA		fgen2
SetTypeToGTFPGA11	Select Data format to GTFPGA		Float 💌
out12	Name of output wo	rd #12 to GTFPGA	fgen3
SetTypeToGTFPGA12	Select Data format	to GTFPGA	Float 💌

Conclusion and Future Plan

- Real-time Co-Simulation performed using industry leading EMT and TSA packages
- Co-simulation case setup process simplified
- Utilize the strengths of both RTDS and TSAT
- Next steps
 - Use same concept to break TSAT region into multiple sub-systems.
 Allow TSAT to simulate super-large system (e.g. the East Interconnection system) in real-time.
 - Further simplify the case setup process

