

Real-Time Optimisation of Distribution Networks Using Optimal Power Flow

Michael Z. Liu

PhD Student in Smart Grids

liumz@student.unimelb.edu.au

2nd October 2019

RTDS Australia User's Group Meeting

Outline

- Context
- Implemented Demonstration Platform
- Case Study
- Remarks
- Conclusions

Orchestration of DER and Network Assets

© 2019 M. Liu - The University of Melbourne

RTDS Australia UGM | 02/10/2019

Optimal Power Flow (OPF)

- One way of formulating the problem
 - Often used in transmission (1 ¢ DC) ... starting to enter distribution (1 ¢ AC)
- Three-phase OPF for distribution networks

The most adequate settings for DER and network assets.

Towards an Active Distribution Network

- Thanks to ...
 - Deployment of **communication** and **metering** infrastructure
 - Advancement in computing power and problem formulations
- Concepts such as network-level optimisation and orchestration of DER and network assets are increasingly becoming plausible
 - E.g., using Optimal Power Flow-based schemes to control DER and network assets

However, before such concepts are readily adopted by industry, their **technical feasibility must be demonstrated**.

Distribution Network Studies

- (Conventionally) Offline analysis with PC-based software
 - Limited external interfaces to other hardware and software
 - Not designed for real-time testing of control schemes
 - Less realistic, not suitable for live demonstrations
- Online analysis with hardware-in-the-loop (HIL) simulation
 - Simulated network can interact with external hardware and software
 - **Realistic environment** for evaluation and demonstration purposes

Proposed HIL Architecture

• A realistic representation of an active distribution network

HIL Demonstration Platform

- Implemented at the Smart Grid Lab (The University of Melbourne)
- Network simulator
 - RTDS / Novacor in distribution mode
- SCADA platform
 - Mango Automation
 - Kepware KEPServerEX
 - AIMMS + Python
- DNP3 protocol
 - Ethernet connection

Case Study: Test Network

- UK-style rural distribution network
 - UKGDS EHV1
 - 132 kV to 11 kV
 - 38 MW peak demand
 - 3 wind farms (20.5 MW installed capacity)
- Controllable elements
 - 3 wind farms (P and Q)
 - 20 OLTCs (tap position)

Case Study: Control Scheme

- Based on a linearised, three-phase OPF¹
 - Maximise renewable energy harvesting
 - Minimise control actions
- Two-minute control cycle

¹ L. Gutierrez-Lagos, M. Z. Liu, and L. F. Ochoa, "Implementable Three-Phase OPF Formulations for MV-LV Distribution Networks: MILP and MIQCP," in *Proc. 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America)*, pp. 1-6.

Network Summary

Total Demand 6.841 MW

Total Generation 10.272 MW 7

Real-Time Profiles

"Using OPF for Smart Grids: From Concept to Reality"

https://youtu.be/1TxaNIqTno4

Challenges Faced & Opportunities

- Distribution network-oriented models
 - Dynamic PQ source, stretchable components, etc.
- Communication interfaces
 - DNP3 variations (ints vs floats)
- **Scalability** to model larger distribution networks
 - E.g., thousands of buses across multiple voltage levels
 - From creating models in RSCAD to visualisation
 - ➤ Automated Process: GIS data → model + interface

Conclusions

- Orchestrating DER and network assets in real-time using optimisation-based schemes is increasingly becoming plausible.
- Hardware-in-the-loop simulations is a powerful technique to demonstrate these concepts in an extremely realistic environment.
- Ultimately, these efforts will help to boost the industry's confidence in adopting more advanced approaches.

Thank you ©

Acknowledgement

Prof Luis (Nando) Ochoa Professor of Smart Grids and Power Systems

Real-Time Optimisation of Distribution Networks Using Optimal Power Flow

Michael Z. Liu

PhD Student in Smart Grids

liumz@student.unimelb.edu.au

2nd October 2019

RTDS Australia User's Group Meeting