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Introduction



Energy Network Transformation
• Main Driving Forces:

– Global demand for clean energy

– Large scale distributed energy sources

• Challenges:
– Remote locations

– Intermittency

– Fast dynamics

• Multiterminal DC (MTDC) grids:
– Long distance transmission 

– Large scale interconnections

– Better energy utilisation
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Primary energy demand, 2035 (Mtoe)

Global renewable energy zones

Multiterminal DC systems



Future DC Power Systems
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HVDC Links Multiterminal DC
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Converters (VSCs)



DC Super Grids: Enablers
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Modular Multilevel 
Converter (MMC)
State of the art 

topology

Hybrid Topologies 
based on Various 

Submodules

Alternate Arm 
Converter (AAC)

Emerging 
topology

Modular VSC Topologies

DC fault tolerant capability



DC Super Grids: Barriers 
• Power Flow control

• Interactions between AC and DC grids

• Stability

• DC-DC transformation

• Protection – DC Breakers & Fault tolerant 
converters

• Standardisation – Converter 
Interoperability

• Reliability & Resiliency

• Other – Security, Ownership, Management, 
Safety & Environmental considerations
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HVDC Benchmark Test Systems
A common basis for the testing 
and performance of research 

concepts and algorithms

Detailed Benchmark 
models for Emerging 

VSC Topologies?



VSC-HVDC Benchmark Test Systems
• CIGRE Working Group B4-57 (HVDC and Power Electronics)

– 3 Subsystems

– 11 AC/DC converters

– 2 DC/DC converters

– 2 DC voltages

• State Grid – SGRI (Smart Grid Research Institute)
– 4 Subsystems

– 19 AC/DC converters

– 5 DC/DC converters

– 5 DC voltages 
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• Detailed studies
• Only MMCs

• LCC and VSCs
• System level studies



Motivation
• Development  of the necessary models and benchmarks that include multiple network 

and converter configurations. 

• Enable multiple users and vendors to have access to the network, in a fashion similar 
to the existing ac networks.
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Development of an HVDC benchmark 
model for the Alternate Arm Converter
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The Alternate Arm 
Converter (AAC)
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Modular Multilevel 
Converter (MMC)

Not DC-fault tolerant 

Modularity

Flexibility 

Scalability

Alternate Arm Converter (AAC)
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Reduced stored energy

Limited energy balancing

DC-fault tolerant

Alternate Arm Converter 
(AAC)

• Emerging VSC topology

• Combines characteristics of: 

– 2-Level VSC and the 

– modular multilevel converter 
(MMC)

• Overmodulated operation:

– ma > 1

• Require bipolar submodules:

– Full-bridge submodules



AAC Operation Modes
• “Sweet-Spot” (ma = 4/π)

– Inherent energy balancing exists

– Net energy exchange of SM capacitors within 
the arms is zero

• Nonsweet-Spot
– Nonzero net energy exchange in the SMs 

– Steady-state stored energy deviates

– Overlap period for energy exchange

– Requires active energy regulation methods
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Net Energy Exchange =
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Proposed AAC-HVDC System



AAC-HVDC Station Modeling
• AAC-HVDC station is modelled equivalent to

the MMC-based HVDC converter of CIGRE
benchmark dc system.

• The DC- and AC-side voltages and power
ratings remain the same, where the AAC
parameters are determined translating from
the equivalent MMC parameters
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AAC-HVDC Station Parameters
• Standard operating point

• Converter transformer

• Number of SMs per arm

• SM capacitance

• Arm inductance

• Director switch ratings

• Overlap period

• DC filter
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AAC-HVDC Station Control
• High-level controller:

– Conventional grid current 
controller

• Low-level controller:
– Director switch control & 

overlap period control

– Overlap current & SM energy 
regulation

– SM capacitor voltage sorting & 
balancing
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Parameters
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RTDS Model - Computational Requirements
• Detailed equivalent model

• 7 x PB5 cards
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The RTDS model files of the AAC-HVDC system can be downloaded from http://bit.ly/AAC Model UNSW

http://bit.ly/AAC%20Model%20UNSW


Results & Verification
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Steady-state Performance
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Inverter Operation Rectifier Operation



Transient Performance
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Power reversal 3-Phase faultReactive power steps SLG fault



Extending to Multiterminal DC Systems
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MTDC System Performance

22

AAC-1 AAC-2 MMC-1 MMC-2



MTDC System Performance cont.
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MMC-AAC Multi-converter MTDC CIGRE DC test system-2 (MMCs)



MTDC System Performance cont.

24

MMC-AAC Multi-converter MTDC CIGRE DC test system-2 (MMCs)



MTDC System Performance cont.
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MMC-AAC Multi-converter MTDC CIGRE DC test system-2 (MMCs)



Summary
• AAC is an emerging HVDC converter topology.

• AAC offers dc-fault tolerant operation and a potential candidate for future HVDC 
applications.

• Existing benchmark HVDC test systems:
– Detailed models - Limited to MMC-based terminals

– System-level study models – Consist of VSCs and LCCs

• Detailed benchmark models are required for other emerging HVDC converter topologies.

• An AAC-based HVDC system is developed in equivalence with existing benchmark 
models & performance is verified using real-time simulations.

• Data and the RTDS model is made openly available for further research.
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