

School of Electrical Engineering and Telecommunications & Real-Time Digital Simulations Laboratory (RTS@UNSW)

### Real-Time Simulation of Emerging Modular VSC Topologies for HVDC Applications

Dr. Harith Wickramasinghe Postdoctoral Research Fellow School of Electrical Engineering and Telecommunications UNSW Sydney



Technologies

2019 RTDS Australia User Group Meeting Melbourne, 2-3 October 2019



UNSW Australia's Global University

Introduction

#### **The Alternate Arm** UNSW Australia's Global University **Converter (AAC)**

**Results & Verification** 

UNSW Australia's Global University

### Proposed AAC-HVDC System

THE REPORT



## **Energy Network Transformation**

- Main Driving Forces:
  - Global demand for clean energy
  - Large scale distributed energy sources
- Challenges:
  - Remote locations
  - Intermittency
  - Fast dynamics
- Multiterminal DC (MTDC) grids:
  - Long distance transmission
  - Large scale interconnections
  - Better energy utilisation



#### Primary energy demand, 2035 (Mtoe)

#### **Multiterminal DC systems**



### **Future DC Power Systems**













### **DC Super Grids: Enablers**





## **DC Super Grids: Barriers**

- Power Flow control
- Interactions between AC and DC grids
- Stability
- DC-DC transformation
- Protection DC Breakers & Fault tolerant converters
- Standardisation Converter Interoperability
- Reliability & Resiliency
- Other Security, Ownership, Management, Safety & Environmental considerations

### **HVDC Benchmark Test Systems**

A common basis for the testing and performance of research concepts and algorithms



Detailed Benchmark models for Emerging VSC Topologies?



### **VSC-HVDC Benchmark Test Systems**

- CIGRE Working Group B4-57 (HVDC and Power Electronics)
  - 3 Subsystems
  - 11 AC/DC converters
  - 2 DC/DC converters
  - 2 DC voltages
- State Grid SGRI (Smart Grid Research Institute)
  - 4 Subsystems
  - 19 AC/DC converters
  - 5 DC/DC converters
  - 5 DC voltages

- LCC and VSCs
- System level studies

**Detailed studies** 

**Only MMCs** 







### **Motivation**

- Development of the necessary models and benchmarks that include multiple network and converter configurations.
- Enable multiple users and vendors to have access to the network, in a fashion similar to the existing ac networks.







# The Alternate Arm Converter (AAC)

### **Alternate Arm Converter (AAC)**

- Emerging VSC topology
- Combines characteristics of:
  - 2-Level VSC and the
  - modular multilevel converter (MMC)
- Overmodulated operation:
  - $m_a > 1$
- Require bipolar submodules:
  - Full-bridge submodules





### **AAC Operation Modes**

- "Sweet-Spot" ( $m_a = 4/\pi$ )
  - Inherent energy balancing exists
  - Net energy exchange of SM capacitors within the arms is zero
- Nonsweet-Spot
  - Nonzero net energy exchange in the SMs
  - Steady-state stored energy deviates
  - Overlap period for energy exchange
  - Requires active energy regulation methods









## **Proposed AAC-HVDC System**

### **AAC-HVDC Station Modeling**

- AAC-HVDC station is modelled equivalent to the MMC-based HVDC converter of CIGRE benchmark dc system.
- The DC- and AC-side voltages and power ratings remain the same, where the AAC parameters are determined translating from the equivalent MMC parameters







### **AAC-HVDC Station Parameters**

- Standard operating point
- Converter transformer
- Number of SMs per arm
- SM capacitance
- Arm inductance
- Director switch ratings
- Overlap period
- DC filter





### **AAC-HVDC Station Control**

- High-level controller:
  - Conventional grid current controller
- Low-level controller:
  - Director switch control & overlap period control
  - Overlap current & SM energy regulation
  - SM capacitor voltage sorting & balancing





Energy Balancing and vol. Delivery Power uo and J. Pou, "Gradient-Based rters," in IEEE Transactions o ate Arm Converters, June 2018. Konstantinou Alternate 1459-1468, H. R. Wickramasinghe, Current Control for Alter 33, no. 3, pp. 1459-1468



### **Parameters**

#### PARAMETERS OF THE AAC-HVDC STATIONS

| Parameter                             | AAC-1                | AAC-2                |
|---------------------------------------|----------------------|----------------------|
| Rated Power                           | 800 MVA              | 800 MVA              |
| DC Voltage                            | $\pm 200 \text{ kV}$ | $\pm 200 \text{ kV}$ |
| Number of SMs per arm                 | 255                  | 255                  |
| SM Voltage                            | 1 kV                 | 1 kV                 |
| Stored Energy                         | 11 kJ/MVA            | 11 kJ/MVA            |
| SM Capacitance                        | 11.5 mF              | 11.5 mF              |
| Arm Inductance (p.u.)                 | 0.016                | 0.016                |
| Nominal Frequency                     | 50 Hz                | 50 Hz                |
| Nominal Operating Point (p.u.)        | 1.15                 | 1.15                 |
| Transformer Resistance (p.u.)         | 0.004                | 0.004                |
| Transformer Leakage Inductance (p.u.) | 0.11                 | 0.11                 |
| Transformer Ratio                     | 0.778                | 0.297                |
| AC-Grid Voltage                       | 380 kV               | 145 kV               |
| Short-circuit Power                   | 30 GVA               | 4 GVA                |
| R/X Ratio                             | 0.1                  | 0.05                 |
| DC Capacitance                        | 88 µF                |                      |
| DC Inductance                         | 50 mH                |                      |

TRANSMISSION LINE AND CONTROL PARAMETERS

| Transmission Line Parameters [12] |                                     |  |
|-----------------------------------|-------------------------------------|--|
| Length                            | 200 km                              |  |
| Resistance                        | $0.011 \ \Omega/\mathrm{km}$        |  |
| Inductance                        | 0.2615 Ω/km                         |  |
| Capacitance                       | 0.2185 Ω/km                         |  |
| Control Parameters (Fig. 3)       |                                     |  |
| DC Voltage Control                | $K_P = 8, K_I = 272$                |  |
| Active/Reactive Power Control     | $K_P = 0, K_I = 33$                 |  |
| AC Voltage/Frequency Control      | $K_P = 0.2, K_I = 30, K_D = 0.0025$ |  |
| Energy Balancing                  | $K_P = 2.9, K_I = 75$               |  |



### **RTDS Model - Computational Requirements**

- Detailed equivalent model
- 7 x PB5 cards



The RTDS model files of the AAC-HVDC system can be downloaded from http://bit.ly/AAC Model UNSW





# **Results & Verification**

### **Steady-state Performance**

(a)

Inverter Operation











400

-200

Vg1 (kV) 0 Vg1

### **Transient Performance**

**Power reversal** 



#### **Reactive power steps**



#### SLG fault



#### 3-Phase fault





### **Extending to Multiterminal DC Systems**







### **MTDC System Performance**





### **MTDC System Performance cont.**



#### CIGRE DC test system-2 (MMCs)





### **MTDC System Performance cont.**







### **MTDC System Performance cont.**

#### **MMC-AAC Multi-converter MTDC**



#### CIGRE DC test system-2 (MMCs)





## Summary



- AAC is an **emerging** HVDC converter topology.
- AAC offers dc-fault tolerant operation and a potential candidate for future HVDC applications.
- Existing benchmark HVDC test systems:
  - Detailed models Limited to MMC-based terminals
  - System-level study models Consist of VSCs and LCCs
- **Detailed** benchmark models are required for other **emerging** HVDC converter topologies.
- An **AAC-based HVDC system** is developed in equivalence with existing benchmark models & performance is verified using real-time simulations.
- Data and the RTDS model is made openly available for further research.

