

School of Electrical Engineering and Telecommunications & Real-Time Digital Simulations Laboratory (RTS@UNSW)

#### Modelling and Simulation of Advanced Energy Conversion Systems for Large-Scale Integration Studies

Mr. Felipe Arraño-Vargas PhD Candidate School of Electrical Engineering and Telecommunications UNSW Sydney



2019 RTDS Australia User Group Meeting Melbourne, 2-3 October 2019





# Challenges and Opportunities

# **Energy Sector Transformation**









# **New Challenges and Opportunities Arise**

- Adopting and understanding new technologies:
  - Renewable and power electronics-based generation.
    - » Low-inertia power systems (if no additional grid support is provided).
    - » Weak grids (low system strength and short circuit capacities).
  - Big data-driven alignment of supply and demand.
- Optimise transmission/generation investments while maintaining reliability.
- New regulatory and market frameworks:
  - Ancillary services.
  - Distributed energy sources.
- Cyber security threats.





# What can we do?

- New technology
  - » New and more detailed models.
  - » New tests.
  - » New control schemes.
- New problems
  - » New methods, algorithms, processes and tools.
- New regulatory and market frameworks
  - » New policies and laws (and lawyers/economists with specialised insight).
- New threats
  - » Joint/interdisciplinary efforts.







# New Technology → New Models

- Models will depend on the power system phenomena under study:
  - Steady-state: load flows, short circuits.
  - Phasor-based: electromechanical stability, quasi-steady state analysis.
  - EMT-type: detailed protection coordination, harmonics analysis.





# **Need for Real-Time Simulations?**

- EMT-type models can run in real time.
- Protection and controller behaviour can be tested.
- Multi-vendor interoperability and testing is possible.
- A digital-twin implementation of a power system may allow the training of operators.

"A single scenario of the SA PSCAD case, run on a modern high performance machine, takes approximately 4-5 hours of real time to simulate 20 seconds of simulation time"<sup>1</sup>





# Advanced Energy Conversion Systems

# Advanced Energy Conversion Systems (AECS)

- 1. Adaptation of generic and widely used models:
  - Accessibility to information.
  - Better visualization and understanding when comparing to black boxes.
  - No confidential information is needed or released.
  - May require variations to fulfil specific requirements.
- 2. Expansion to include reactive power (*Q*), voltage ( $V_{PCC}$ ) and power factor ( $\cos(\theta)$ ) control at the PCC.
- 3. Response under steady state conditions.
- 4. Integration to an open-source and practical test system.
  - F. Arraño-Vargas & G. Konstantinou, "Real-Time Models of Advanced energy Conversion Systems for Large-Scale Integration Studies," in IEEE 10<sup>th</sup> PEDG. Xi'an, 11 China, Jun. 2019, pp. 756-761.





# **Power Electronics Modelling in RTDS**

1. Switch representation: on\off

2. Conductance remains unchanged

3. Energy balance

4. Resistance is selected using a heuristic approach

> Time-step of  $\approx 2\mu$ s

$$R_{on} = 2L/\Delta t$$
  
 $R_{off} = R + \Delta t/2C$ 

$$G_{on} = G_{off}$$

$$Li^2/2 = Cv^2$$

$$L = \sqrt{2} (\Delta tF) \nu/i$$
  

$$C = (\Delta tF)^2/L$$
  

$$R = 2L/\Delta t - \Delta t/2C$$
  

$$F = \frac{1}{2(\sqrt{\zeta^2 + 1} - \zeta)}$$



# Wind Power Generation Systems (WPGS)

#### Type-III:

- Vestas V90 2 MW wind turbine
- 2-level VSCs
- RSC: T and  $Q_s(Q^*, V_{PCC}^*, cos(\theta)^*)$
- GSC:  $V_{dc}$



#### Type-IV:

- Generic 2 MW wind turbine
- 3-level neutral-point clamped VSCs
- MSC:  $\omega_r$
- GSC:  $V_{dc}$  and  $Q_{PCC}$   $(Q^*, V_{PCC}^*, cos(\theta)^*)$





# Photovoltaic Power Plant (PV-PP) and STATCOM

#### **PV-PP:**

- Generic 1.7 MW solar array
- Inv.:  $V_{dc}$  and  $Q_{PCC}$   $(Q^*, V_{PCC}^*, cos(\theta)^*)$

#### STATCOM:

- Generic 100 MVAr STATCOM
- Inv.:  $V_{dc}$  and  $V_{ac}$





# Battery Energy Storage System (BESS)

- Generic 0.6 MW Li-on battery pack
- Buck converter:  $V_{dc}$
- GSC:  $P_{PCC}/f_{PCC}$  and  $Q_{PCC}$  ( $Q^*$ )
- Frequency support:
  - 1.75% droop
  - $\pm 0.15$  Hz dead band





## **Step Responses:** $Q^*$ , $V_{PCC}^*$ and $\cos(\theta)^*$





| - Reference Type-III WEGS Type-IV WEGS FV-FF | — — — Reference | Type-III WPGS | —— Type-IV WPGS | PV-PP |
|----------------------------------------------|-----------------|---------------|-----------------|-------|
|----------------------------------------------|-----------------|---------------|-----------------|-------|



## **STATCOM:** Step Response – Voltage Order





## **BESS: Frequency Variation Response**









# **Case Study**

# **Case Study**

- Simplified Australian power system:
  - 14 generators: PSSs, exciters and governors.
  - 5 SVCs: TCR + TSC.
  - 59 buses.
  - 104 lines.
  - 6 operating conditions.
- Simplified Australian power system + AECSs:
  - Case 7: 1910 MW (89.6% A5 / 12.9% total)
  - Case 8: 4099 MW (27.8% total)





# **Simulation Requirements**

#### **RTDS** simulator:

- Developed for "PB5" processor cards
  - Case 1 6: 12 cards
  - Case 7: 20 cards
  - Case 8: 22 cards

#### Time-steps:

- 50µs
- 2.5µs



Case 7: system layout



# Validation of Original Cases

- RMSEs are calculated for  $V^*$ , P and Q.
- $Q_{gen}$  values vary mainly due to different dispatch in a generator (NPS 5) and an SVC (PSVC 5).

|         | V  <b>(mV)</b> | ∠V <b>(</b> ° <b>)</b> | $P_{gen}(MW)$ | $Q_{g\mathrm{en}}$ (MVAr) | P <sub>load</sub> (MW) | Q <sub>load</sub> (MVAr) |
|---------|----------------|------------------------|---------------|---------------------------|------------------------|--------------------------|
| Average | 1.11           | 0.67                   | 1.37          | 8.75                      | 0.47                   | 0.16                     |

\*Angles at bus voltages are compensated by  $30^{\circ}$  ( $Y - \Delta$  step-up transformers in RSCAD/RTDS).



## Case 1: Fault at Bus 209 – HPS 1





### Case 6: Fault at Bus 209 – ASVC 2



| PSS/E RT | DS |
|----------|----|
|----------|----|



## **Case 7: Asynchronous Generation**



a) Type-III WPGS. b) PV-PP 4. c) BESS. d) MPS 2



### Case 7: Fault at Bus 508

26

a) BESS. b) NPS 5. c) MPS 2. d) Interconnector (A5-A3)





#### 27

#### a) BESS. b) NPS 5. c) MPS 2. d) Interconnector (A5-A3)



## Case 8: Fault at Bus 209









- Without AECSs - With AECSs

28

•

BESS

# Summary



- Benchmark models with reasonable balance between detail and simplifications are required.
- Real-time EMT models for Type-III and -IV WPGSs, PV-PP, BESS, and STATCOM have been proposed.
  - Models tested under both steady and transient operating conditions.
  - Models can be easily modified to analyse large penetration of renewables.
- The real-time EMT model of the *simplified Australian 14-Generator test system* has been made openly available.<sup>1</sup>
  - It can be further adapted and extended to consider HVDC and MTDC systems.

