

School of Electrical Engineering and Telecommunications & Real-Time Digital Simulations Laboratory (RTS@UNSW)

#### **Integration of Solar PV Systems:**

From Standards Testing to Power Hardware-in-the-Loop functional validation

Dr. Georgios Konstantinou Senior Lecturer and ARC Early Career Research Fellow School of Electrical Engineering and Telecommunications UNSW Sydney



2019 RTDS Australia User Group Meeting Melbourne, 2-3 October 2019





## **Our Simulators**

#### **Our Simulators - RTDS**

- Hosted in the Tyree Energy Technologies Building
- 18-rack RTDS System
  - 90 PB5 Processor Boards
  - 216 Analogue IOs (18 GTAO / GTAI cards)
  - 1152 digital optically isolated IOs (18 GTDO / GTDI cards)
  - 18 GTNET cards





#### **Our Simulators - RTDS**







#### **Our Simulators – Additional Hardware**

- 4x Omicron CMS156 Amplifiers
- 2x Schneider Electric Easergy P3 Protection Relays
- 1x PSL microPMU

Interfaced via two optical fiber links to UNSW Power Electronics Research Laboratory for PHiL testing





#### Laboratory Interoperability

#### GTAOs drive 3x REGATRON TC.ACS 50kVA 4-quadrant grid simulators



- GTAIs used for measurement and feedback to the RTDS
- 4x TopCon DC (10kW and 16kW) as PV emulators and dc power supplies





#### **PHiL capabilities - Example**



7 Konstantinou, G., Ceballos, S., Gabiola, I., Pou, J., Karanayil, B., & Agelidis, V. G. (2017, October). Flexible prototype of modular multilevel converters for experimental verification of DC transmission and multiterminal systems. In 2017 Asian Conference on Energy, Power and Transportation Electrification (ACEPT) (pp. 1-6). IEEE.



#### **PHiL capabilities - Example**





#### **PHiL capabilities - Example**







# The Challenge & Motivation

#### QLD – SA Separation Event (August 2018)

Saturday 25 August 2018,

- A single lightning strike on a transmission tower structure supporting the two circuits of the 330 kilovolt (kV) Queensland New South Wales interconnector (QNI) lines.
- The QLD and NSW power systems then lost synchronism, islanding the QLD region two seconds later.
  - » At the time, 870 MW of power was flowing from QLD to NSW.
  - » QLD experienced an immediate supply surplus resulting in a rise in frequency to 50.9 Hertz (Hz).
  - » The remainder of the NEM experienced a supply deficit, resulting in a reduction in frequency.



#### QLD – SA Separation Event (August 2018)

- Basslink interconnector immediately increased flow from TAS to VIC from 500 MW up to 630 MW (Frequency control)
  - » This created a supply deficit in TAS (81 MW lost via UFLS)
- Heywood interconnector experienced rapid changes triggering the Emergency APD Portland Tripping (EAPT) scheme.
  - » SA separates from the NEM at Heywood, 6 seconds after QNI separation.
  - » SA frequency rises
  - » VIC / NSW frequency drops below 49 Hz triggering UFLS.
  - » A total of 997.3 MW of supply was interrupted in VIC and NSW (904 MW of smelter load in both regions and 93.3 MW of consumer load in NSW).



#### **Frequency across the NEM**









At the time of the event:

- Distributed generation (mostly PV) was ~3,096 MW (Total installed ~6,300 MW).
- Total installed 2019 Estimated > 9GW
- Over-frequency in QLD / SA
  - » Contribution by output reduction (AS4777)
- Underfrequency in VIC / NSW
  - » No provisions under current standard

| Region | Output  | Capacity |
|--------|---------|----------|
| NSW    | 526 MW  | 1709 MW  |
| QLD    | 1043 MW | 2177 MW  |
| SA     | 600 MW  | 919 MW   |
| TAS    | 65 MW   | 124 MW   |
| VIC    | 862 MW  | 1349 MW  |



- 1. Approximately 15% of sampled systems installed before October 2016 dropped out during the event.
- 2. Of the sampled systems installed after October 2016, around 15% in QLD and 30% in SA did not provide the over-frequency reduction capability required by the applicable Australian standard.



SA response (Sampled)

QLD response (Sampled)





NSW response (Sampled)







## Across the NEM?

- Scaling up\* across the NEM it is apparent that DG response will have substantial contribution during disturbances as:
  - DG penetration increases
  - System inertia decreases











#### **Recommendations following the event**

1. Reduce the risk of islanding regions from the NEM by reviewing and improving protection schemes and other control and protection schemes.

2. Characterize and model the **response of distributed PV to system disturbances**, including investigation of the potential benefits accessible from a distributed PV response.

3. Improve modelling of frequency response and active power control characteristics of the power system.



Similarities?

- **1. Lightning strike** on a transmission circuit (the Eaton Socon Wymondley Main).
  - The protection systems operated and cleared the lightning in under 0.1 seconds. The line then returned to normal operation after c. 20 seconds
  - Following the lightning strike and within seconds of each other
    - Hornsea off-shore windfarm reduced its output.
    - Little Barford gas power station reduced its output.
- 2. Unexpected loss of generation meant that the **frequency dropped very quickly** outside the normal range of 50.5Hz 49.5Hz



3. There was **some loss of small embedded generation** which was connected to the distribution system (**c. 500MW**) due to the lightning strike.

Immediately following the lightning strike on the Eaton Socon–Wymondley circuit ~500MW of embedded generation was lost, typically this would be solar, and some small gas and diesel fired generation, due to the operation of the generation sources own protection systems (Loss of Mains Protection)

The lightning strike initiated the **operation of Loss of Mains (LoM) protection** on embedded generation in the area and added to the overall power loss experienced.



Recommendations:

- The amount of forecast embedded generation **that could be lost** through the LoM protection should also be considered.
  - This loss is considered as independent of the largest infeed loss and so the response holding should cover the larger of the two but does not need to cover both events. The ESO must also consider the inertia of the system and ensure enough response to prevent operation of the RoCoF LoM protection.
  - Protection considerations based on
    - » Change in Frequency
    - » Change in Voltage and Vector Shift (Phase Jump)









## **Inverter Testing**

100

#### **Addressing Barriers to Efficient Renewable Integration**

Aims of the project:

- Understand PV inverter behaviour during grid disturbances
- Bench testing commercial PV inverters
- Contribute to improve AS 4777.2: 2015 "Inverter requirements"
- Develop composite PV-load model closely emulating dynamics of loads with high PV penetration



#### **Inverter bench testing**



- PV emulator simulates non-linear characteristic of PV array
- Grid emulator: single phase grid voltage; ability to change frequency, phase angle, voltage amplitude
- Data are sampled at 50 kHz on digital oscilloscope and post processed using MATLAB/SIMULINK



#### **Possible Transient Behavior**

Fast voltage sag ride-through

Fast voltage sag curtailment





#### Fast voltage sag curtailment to 0 W





#### Phase angle jump test

Phase angle profile applied:



tion



#### 15° phase angle jump ride-through





#### **30° phase angle jump disconnection**





#### 30° phase angle jump power curtailment





#### Rate of Change of Frequency (RoCoF) test



Possible inverter behaviour:

- Ride-through (frequency-Watt response)
- Disconnection



#### 1 Hz/s RoCoF

Ride-through or disconnection?





#### Summary

Potential loss of PV power caused by grid disturbances

|                                                   | Fast<br>voltage sag | 45°<br>phase jump | 1 Hz/s<br>RoCoF |
|---------------------------------------------------|---------------------|-------------------|-----------------|
| Inverter tested<br>disconnecting or<br>curtailing | 30%                 | 55%               | 17%             |
| DER power<br>affected*                            | 2-30%               | 3 – 29%           | 3 – 39%         |

\*percentage out of total DER power installed in Australia from PV systems up to 9.5 kW







# **Real-Time Simulations**

#### **Standards Testing vs Field Experience**





#### **Can RTS Enhance Standards Validation**

#### **Standards Compliance**

- Pass / No Pass
- Specific conditions
- "Unrealistic" scenarios
  - e.g. frequency response for AS4777.2 (2015): slow reduction to 47.1 Hz then outside of range
- Single Inverter tests
- No network considerations

#### **Power Hardware-in-the-loop**

- Functional testing based on network models
- Upstream / Downstream faults
- Integrated transmission and distribution cases
- Multiple Inverters in a distribution system
- Unbalanced networks



#### **Current Bench Test**

SMA Inverter





## **Benefits of PHiL for Inverter Testing**

Next step:

Performance validation through Power Hardware-in-the-Loop (PHiL).

- Test at different levels of solar PV penetrations in feeders.
- Coordinate testing of multiple inverters in the same feeder.
- Test for multiple feeders (urban, suburban, rural etc)







## **Stage 2 Bench Testing**

#### **Preliminary Steps**

- Based on RSCAD v5 Distribution Mode
- Using IEEE benchmark models of distribution networks (e.g. IEEE 34 bus)
- Development of test procedure
- Validation against existing bench testing results
- Impact of location Worst case scenarios
- Testing automation





## **Stage 2 Bench Testing**

#### **Next Steps**

Development of real-time models for Australian distribution networks

- Medium voltage networks
- Low voltage networks
  - e.g. ARENA supported projects
- Extension to multiple inverters on the same distribution network
- Hybrid Power HiL / simulated inverters





#### **Stage 2 Bench Testing**

#### **Next Steps**

- Integration of transmission and distribution networks
  - Currently at offline (PSCAD) stage



| Multiple Run | Time        | Fault Resistance | Туре              | Location | Pre Fault Voltage | Phase A Voltage | Phase Angle A | Sag %age | Phase B Voltage | Phase Angle B | Sag %age | Phase C Voltage | Phase Angle C | Sag %age |
|--------------|-------------|------------------|-------------------|----------|-------------------|-----------------|---------------|----------|-----------------|---------------|----------|-----------------|---------------|----------|
| 1            | 0.51204719  |                  | SLG               | TBus6    | 0.205             | 0.13304338      | -51.96423     | 35.101%  | 0.18155702      | 173.22177     | 11.436%  | 0.12889746      | 40.29460      | 37.123%  |
|              | 0.503693369 | 10               | SLG               | TBus6    | 0.205             | 0.13292607      | -54.17001     | 35.158%  | 0.18152769      | 173.20063     | 11.450%  | 0.13393267      | 40.10583      | 34.667%  |
|              | 0.517627293 |                  | LLG               | TBus6    | 0.205             | 0.05917304      | -50.24133     | 71.135%  | 0.14160664      | -168.86007    | 30.924%  | 0.12460708      | 35.77649      | 39.216%  |
|              | 0.511507275 | 10               | LLG               | TBus6    | 0.205             | 0.06361323      | -60.75183     | 68.969%  | 0.13905912      | -171.01345    | 32.166%  | 0.13136700      | 36.00503      | 35.919%  |
|              | 0.505114479 |                  | 3 Phase to Ground | TBus6    | 0.205             | 0.05894992      | -50.45326     | 71.244%  | 0.05924292      | -171.17646    | 71.101%  | 0.05845027      | 68.93553      | 71.488%  |
| 6            | 0.508952569 | 10               | 3 Phase to Ground | TBus6    | 0.205             | 0.06347379      | -60.97862     | 69.037%  | 0.06379110      | 178.29780     | 68.882%  | 0.06293606      | 58.40843      | 69.299%  |
| 7            | 0.500997315 | 1                | SLG               | TBus8    | 0.205             | 0.14530420      | -53.99529     | 29.120%  | 0.18168642      | 173.10895     | 11.372%  | 0.13484950      | 45.23764      | 34.220%  |
| 8            | 0.502443654 | 10               | SLG               | TBus8    | 0.205             | 0.14451278      | -55.82698     | 29.506%  | 0.18166174      | 173.09480     | 11.385%  | 0.13922969      | 44.57766      | 32.083%  |
| 9            | 0.501973768 | 1                | LLG               | TBus8    | 0.205             | 0.08647313      | -53.87036     | 57.818%  | 0.14971139      | -172.41533    | 26.970%  | 0.13235835      | 42.60810      | 35.435%  |
| 10           | 0.518076402 | 10               | LLG               | TBus8    | 0.205             | 0.08974365      | -60.33905     | 56.223%  | 0.14740652      | -174.28799    | 28.094%  | 0.13799633      | 42.17809      | 32.685%  |
| 11           | 0.514044755 | 1                | 3 Phase to Ground | TBus8    | 0.205             | 0.08629762      | -54.02879     | 57.904%  | 0.08673540      | -174.74722    | 57.690%  | 0.08557644      | 65.35717      | 58.255%  |
| 12           | 0.506396256 | 10               | 3 Phase to Ground | TBus8    | 0.205             | 0.08963115      | -60.49951     | 56.277%  | 0.09008675      | 178.78162     | 56.055%  | 0.08888197      | 58.88572      | 56.643%  |
| 13           | 0.509426819 |                  | SLG               | DBus806  | 0.205             | 0.12171954      | -55.46713     | 40.625%  | 0.18274354      | 172.91091     | 10.857%  | 0.13660978      | 34.67503      | 33.361%  |
| 14           | 0.513279956 | 10               | SLG               | DBus806  | 0.205             | 0.17857772      | -64.31219     | 12.889%  | 0.20144729      | 176.03293     | 1.733%   | 0.19202801      | 49.95069      | 6.328%   |
| 15           | 0.505424751 |                  | LLG               | DBus806  | 0.205             | 0.06210361      | -101.87509    | 69.706%  | 0.11234189      | -171.80261    | 45.199%  | 0.14583081      | 31.77511      | 28.863%  |
| 16           | 0.502997877 | 10               | LLG               | DBus806  | 0.205             | 0.15818311      | -74.68454     | 22.838%  | 0.16241840      | 171.62308     | 20.772%  | 0.17536906      | 47.31086      | 14.454%  |
| 17           | 0.50722809  |                  | 3 Phase to Ground | DBus806  | 0.205             | 0.06250178      | -102.28187    | 69.511%  | 0.06169565      | 135.35600     | 69.905%  | 0.05987278      | 17.21269      | 70.794%  |
| 18           | 0.504870888 | 10               | 3 Phase to Ground | DBus806  | 0.205             | 0.15776516      | -74.84313     | 23.041%  | 0.15846627      | 163.93849     | 22.699%  | 0.15519648      | 44.32183      | 24.294%  |
| 19           | 0.507611981 | 1                | SLG               | DBus828  | 0.205             | 0.15195600      | -44.07241     | 25.875%  | 0.21098947      | 178.95061     | -2.922%  | 0.14397410      | 45.01381      | 29.759%  |
| 20           | 0.514533109 | 10               | SLG               | DBus828  | 0.205             | 0.15265891      | -49.75970     | 25.532%  | 0.21104366      | 179.11122     | -2.948%  | 0.15956554      | 45.21661      | 22.163%  |
| 21           | 0.510534797 | 1                | LLG               | DBus828  | 0.205             | 0.03267067      | -79.05333     | 84,063%  | 0.14102967      | -156.17886    | 31.205%  | 0.15169050      | 35.94124      | 26.005%  |
| 22           | 0.504087777 | 10               | LLG               | DBus828  | 0.205             | 0.07451954      | -83.22033     | 63.649%  | 0.14073233      | -165.56070    | 31.350%  | 0.16779305      | 40.55279      | 18.150%  |
| 23           | 0.510560748 | 1                | 3 Phase to Ground | DBus828  | 0.205             | 0.03114022      | -80.97170     | 84.810%  | 0.03034457      | 157.88236     | 85.198%  | 0.03021661      | 39.76915      | 85.260%  |
|              | 0.512409169 | 10               | 3 Phase to Ground | DBus828  | 0.205             | 0.07297808      | -84.55832     | 64.401%  | 0.07125090      | 152.85914     | 65.243%  | 0.06929814      | 35.40296      | 66.196%  |



**Amplifier operation mode** External signals are given on the analogue interfaces for each phase.

- Any device which creates electrical signals, can be used as signal generator (in our case an RTDS GTAO card).
- Generally a good quality digital-/analogue interface with a minimum of three channels (one channel for each phase) is recommended.







Feeding mode positive power in Q1 and Q3

Regenerative mode negative power in Q2 and Q4



#### 11.4.1. AC connection line side

| AC connection line side |                                    |  |  |  |  |
|-------------------------|------------------------------------|--|--|--|--|
| Line voltage            | 3 x 380 - 440 V <sub>AC</sub>      |  |  |  |  |
| Line frequency          | 48 – 62 Hz                         |  |  |  |  |
| Connection type         | 3 L + PE (no neutral)              |  |  |  |  |
| Input current           | 3 x 85 Arms                        |  |  |  |  |
| Power factor            | (0) - 1 at nominal power (default) |  |  |  |  |

Tab. 23 AC connection line side – parameters.

#### 11.4.2. AC connection load side

| C connection load side |                                                            |
|------------------------|------------------------------------------------------------|
| Power range            | 0 – 50 kVA                                                 |
| Voltage range          | 0 – 280 V <sub>rms</sub> (L-N)                             |
| Frequency range        | Fundamental waves: 0 – 1000 Hz<br>Full power: 16 – 1000 Hz |
| Connection type        | 3 L + N + PE                                               |
| Current range          | 3 x 0 – 72 A                                               |

Tab. 24 AC connection load side – parameters.









Typical Inverters at 5-10 kVA, within continuous operation of the system.



## **Moving Forward**

- Testing Automation
  - Current "power ramp rate" means a lot (really a lot) of waiting!
- Closed loop Power HiL simulation
  - Not critical to the test plan, but good to have!
- Generic Inverter models for real-time simulation
  - How to do that with multiple inverters?
- "Mission profiling"





## Summary



Supplementing AS4777 Inverter compliance through Power Hardware-in-the-loop testing:

- Considerations for distribution feeders and transmission networks.
- Testing for different PV / RE penetration levels:
  - In a feeder
  - Across the network
- Validation against multiple faults (e.g. credible network faults and random events)
- Multiple inverters on the feeder (physical and simulated)
- Testing automation





#### <sup>50</sup> <u>http://pvinverters.ee.unsw.edu.au</u>