

Realization of User-Defined HVDC Converter Models for RTDS using Simulink Real-Time Embedded Coder

Deyang Guo

deyang.guo@strath.ac.uk

11th Oct 2018 RTDS European User's Group Meeting

Outlines

Reason

 \circ Why user-defined MMC model

Development process

Half-bridge MMC

- Switching function model
- Realization in Matlab/Simulink

□ Validation of user-defined model against MMC5 model

Three-Phase-to-Ground AC Fault

Pole-to-pole DC Fault

□ Conclusion

User-defined MMC model

MMC models from library:

- Processor based model
 - MMC5
 - CHAINV5

- GTFPGA based model
 - The Unified Model (U5)
 - The Generic Model (GM)

User-defined MMC model:

- Flexibility
 - Modelling methods
 - Topologies
 - Configurations
- Parameters
 - Control strategies
 - Processor assignment

A user-defined processor-based half-bridge MMC model is developed.

Simulation Challenges of MMC

- Large number of SM per arm modular design & good scalability
- Generate near sinusoidal AC output using low switching frequency

Switching Function Model

- The semiconductor switching devices are represented by ideal switches, where the ON and OFF states are denoted by 1 and 0 respectively.
- Capacitor voltage and current dynamics are expressed in terms of • switching functions Sxi:

$$v_{mi}(t) = s_{xi}V_{CSMi}(t)$$
 $i_{ci}(t) = s_{xi}I_{arm}(t)$

Switching Function Model

- At each time step, the capacitor voltages are updated and arm voltage calculated.
- Simulation speed increased.
- For dealing with converter blocking state, internal diodes and switches are added at each arm.

Switching Function Model

MATLAB/SIMULINK

K Ts z × × × × z-1 Product Product6 Unit Delay2 Product4

Matlab:

- R2015b ۲
- Model configuration parameters ٠ are based on the Simulink-**RSCAD** conversion tutorial

Switching function modelling method:

Components from Simulink ٠ library

(multiply, delay, integrator)

MATLAB/SIMULINK

Capacitor voltage balancing control:

- Simple code(21 lines)
- Basic strategy: sort function
- Sorting all capacitor voltages every simulation time step

RSCAD Component Builder

- Tool: Import Simulink model
- Component type: Control
- Inputs and outputs
- 50µs simulation time step

Validation against MMC5 model

VSC MODEL TYPE: MMC5

NOTE:

NOTE: DEBLOCKED SMs THAT ARE

FIRE 1: SM IN +VE (NORD > 0)

FIRE 2: SM BYPASSED

NOT IN +VE ARE BYPASSED.

MMC5 model

THIS MMC MODEL INCLUDES

AUTOMATIC BALANCING OF THE SM CAPACITOR VOLTAGES.

function model

- MMC5 model from RSCAD library is used as the benchmark ٠
- Half-bridge ۲

G1PA1

DT / 2

O Block

0

Nau

0.042

DEBLOCK (LSB 0/1 0=N0, 1=YES)

NORD (INTEGER # OF SM IN +VE)

(0 <= NORD <= NM_SM)

PARAMETERS FOR

ONE SUB-MODULE

Vswit = 32 kV

lswit = 2 kA

CuF = 628.4 microF Tdis = 200 Seconds

- 20 SMs per arm ۲
- Same test system ۲

Strathcl Engineering

Test System

- Simple one terminal MMC supplied by a DC source
- Converter is in active power control mode
- The SM capacitances are calculated based on the recommended value of 30 kJ/MVA (by ABB*)

B. Jacobson;, P. Karlsson;, G.Asplund;, L.Harnnart; and a. T. Jonsson, "VSC-HVDC Transmission with Cascaded Two-level Converters," presented at the CIGRE 2010, 2010.

Test System

Table I: Simulation Parameters

Parameters		Value
MMC rated active power (P)		1200MW
MMC nominal dc Voltage (V_{dc})		$640 \text{kV}(\pm 320 \text{kV})$
MMC rated ac output voltage (L-L)		360kV
Arm inductance (L_{arm})		0.13pu
SM capacitance (C_{SM})	20-SM	628µF
Nominal Frequency		50Hz
Interfacing transformer voltage ratio		400/360kV
Transformer leakage reactance		0.18pu

Simulation Scenarios:

- 1. Three-Phase-to-Ground AC Fault
- 2. Pole-to-pole DC Fault

MMC Control - Overall Control System

University of Strathclyde

MMC Model Implementations in RTDS

- Part of the MMC models with the requirements of high switching • frequency are built in small time step.
- The AC grid source is modelled in a large time step. ٠
- These two parts of power circuit are connected by a interface • transformer.
- The model is implemented on one RTDS rack, with one PB5 card and ٠ 2 GPC cards.

1. Three-Phase-to-Ground AC Fault

- Symmetrical three-phase AC fault happens at *t*=4s and the fault is cleared after 300ms
 - MMC5: MMC5 model
 - SFM: User-defined switching function model

• Converter-side AC currents are well agreed

1. Three-Phase-to-Ground AC Fault

 Average value of capacitor voltages and arm currents are well agreed

2. Pole-to-pole DC Fault

- Fault is applied at t=6s
- Converter blocking is activated 50µs after fault inception

 Observe that both pole-to-pole DC voltages and DC currents are well agreed during steady-state and transition to new steady-sate in postfault.

2. Pole-to-pole DC Fault

Sum of capacitor voltages and ٠ arm currents are well agreed

Strathclyde Engineering

V^{SFM}

-V^{SFM}

V^{MMC5} low

VMMC5

up

University

Limitations of this model

- The user-defined model converted from Matlab/Simulink is a processor-based model.
- The total number of SMs per arm is limited by capability of single processor (assigned one processor for capacitor voltage balancing and capacitor voltage calculation of each arm).
- Because of switching function modelling method, this model is not able to be used for simulation of internal faults.

- Matlab/Simulink could be used to speed up the develop of efficient and high fidelity user-defined components for RTDS platform such as HVDC converter models and control systems.
- An illustrative example that implements a user-defined half-bridge MMC model is presented.
- Its results are validated against that of the benchmark model MMC5 from RTDS library.
- Detailed one-to-one comparison of the simulation waveforms show that the user-defined and MMC5 models simulation waveforms are in full agreement to the microscopic level.

Thank you for your attention! Question?