

HVDC grid developments Need for new modeling tools and approaches

Prof. dr. Dirk Van Hertem

dirk.vanhertem@esat.kuleuven.be

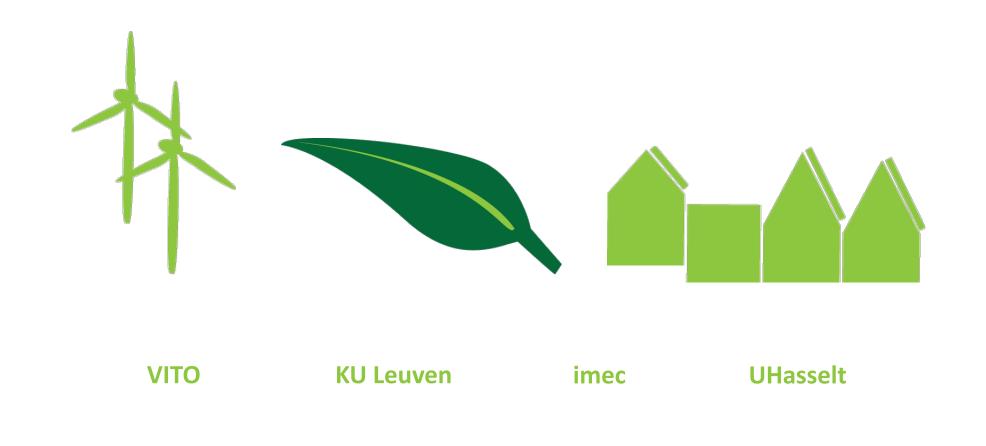
KU Leuven / EnergyVille

KU Leuven as university

- **S** Founded **1425**
- Consistent recognized academic leadership
- 🥆 Top ranked institute
- Solution Content of the second second
- Reuters: TOP 10 OF MOST INNOVATIVE UNIVERSITIES IN THE WORLD

Nr 1 in Europe

- 1. Stanford University (US)
- 2. Massachusetts Institute of Technology MIT (US)
- 3. Harvard University (US)
- 4. University of Pennsylvania (US)
- 5. KU Leuven (Belgium)
- 6. KAIST (South Korea)
- 7. University of Washington (US)
- 8. University of Michigan System (US)
- 9. University of Texas System (US)
- 10.Vanderbilt University (US)



Some KPI of KU Leuven

A COMPREHENSIVE UNIVERSITY	KU LEUVEN IN NUMBERS	OUR RESEARCH
78 bachelor's	Founded in 1425	7,296 researchers
programmes (74 taught in Dutch, 4 in English)	14 campuses in 10 cities across	475 million
205 master's programmes	Flanders 16 faculties	euros research expenses
(141 taught in Dutch, 62 in English, 2 in French)	57,286 students	5,098 PhD students
44 advanced master's programmes	20,524 staff members	124 spin-offs
(19 taught in Dutch, 24 in English and 1 in Spanish)	+250,000 alumni	

Last updated: February 2018

EnergyVille Flemish energy research partnership by:

Flemish energy research collaboration by

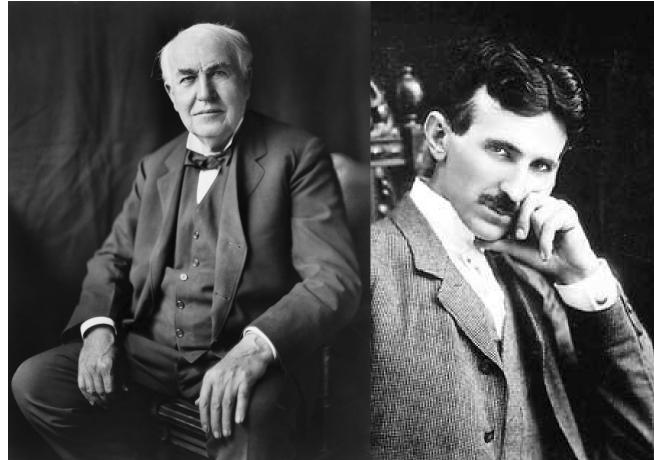
Energy Ville

The energy transition: EnergyVille's vision

Information- & communicationtechnology Technological innovation + Cost reduction

Sustainable Energy System

- Multi-scale but mainly decentralized energy system
- Electricity dominant vector
- Coupling with heat, gas, ...
- Key role of cities (highly complex urban context)



Agenda

- **KU Leuven & EnergyVille**
- **N**HVDC: an historic perspective and new applications
- **N**HVDC, the key enabling technology for the supergrid
- New models are needed!
- Real-time simulation applications for HVDC & HVDC grid research

History: Struggle of the (scientific) titans

- At the dawn of electricity (1885 1890s): two struggling parties
 - Thomas Edison
 - Nicola Tesla (and Westinghouse)
- War of the currents: http: //www.youtube.com/watch?v=kn-nhXMhXQ4
- Edison was heavily opposed to AC (Electrocution of condemned people was shortly called "Westinghousing")
- AC won because of:
 - Easy to transfer up to higher voltages
 - Rotating field
 - Breaking DC currents

Edison & Tesla (Source Wikipedia)

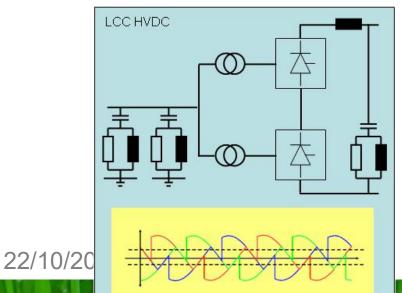
HVDC in the power system

- Revival of DC from the '50s: High Voltage DC
 - Used for the transport of bulk power over long distances
 - Used for undersea (cable) connections
 - Used for the interconnection of non-synchronous networks
 - 50-60 Hz back-to-back: Japan, South-America
 - Asynchrounous networks: Fr–UK, Scandinavia Continental Europe, Europe Russia, . . .
- Second revival from the second half of the '90s
 - New markets (e.g. China and India)
 - Switching/acting component at first were mercury valves and later thyristors . .
 - Transistor based components (IGBT) for HVDC started in the 90's
 - Cable connections become more important
 - ⇒ New applications such as offshore
- +/- 100 schemes

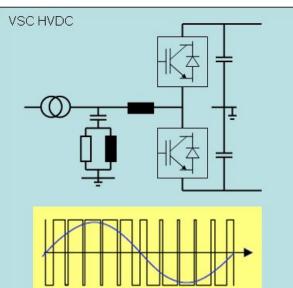
Main properties of HVDC installations vs AC

- Fewer cables are needed for equal power transmission
- No reactive losses
 - No stability distance limitation
 - No limit to cable length
 - Lower electrical line losses
- No need for maintaining synchronism
 - Connecting different frequencies
 - Asynchronous grids (UCTE UK)
 - Black start capability?
- Power flow (injection) can be fully controlled
- Can be cheaper...
 - Transmission line/cable is cheap(er), converter is expensive
- Often turnkey projects
- "Special component" in the eye of the system operator

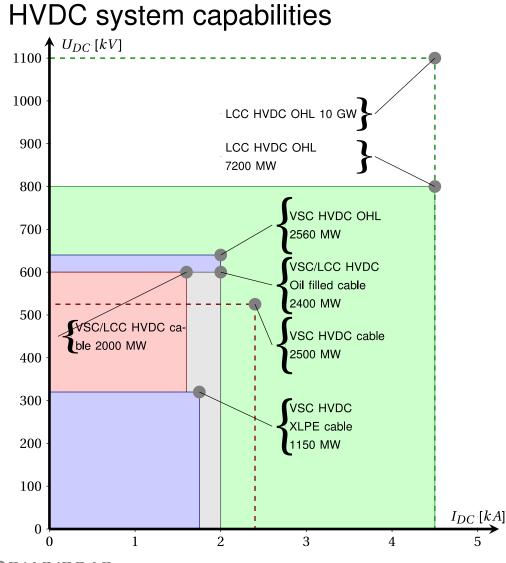
TOSHIBA



HVDC: two available converter technologies


CSC or LCC technology

- Uses thyristors
- Largest power ratings
- Cheapest & lowest losses
- ✤ Harmonics & large filter installation
- Mass impregnated cables
- Active power control
- Not for offshore


▼VSC technology

- Uses IGBT
- Power still limited
- More expensive + 1% / converter losses
- Clean sinus & small footprint
- * XLPE cables
- ✤ Active and reactive power control
- Offshore possible

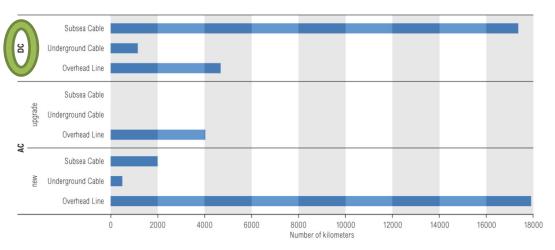


→Now MMC topology

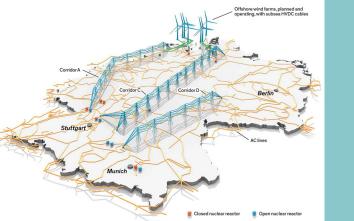
System sizes

HVDC cable system capabilities

10


22/10/2018

New technologies provide more flexibility to operate the grid

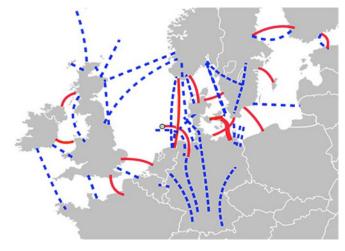

Number of the second se

- ✤ to connect remote offshore wind
- to interconnect non -synchronized systems
- ✤ to reinforce the transmission system
- Inderground, also for short distances
- Key technology for large-scale integration of renewable energy sources

ENTSO-E TYNDP 2014: >20 000 km DC by 2030 40 % of total investments

Figure 0-3 TYNDP 2014 investment portfolio - breakdown per technology

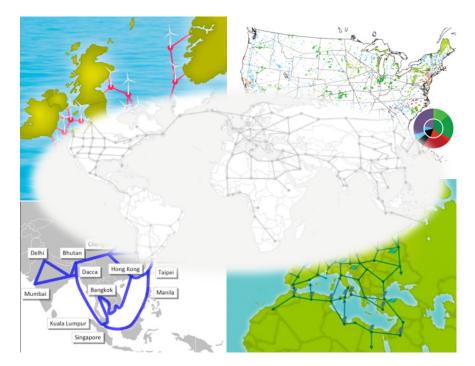
E-merge Alliance, IEEE Spectrum, Friends of the supergrid, ENTSOE



Agenda

- **KU Leuven & EnergyVille**
- **N**HVDC: an historic perspective and new applications
- **N**HVDC, the key enabling technology for the supergrid
- New models are needed!
- Real-time simulation applications for HVDC & HVDC grid research

Research vision


The properties of the set of the

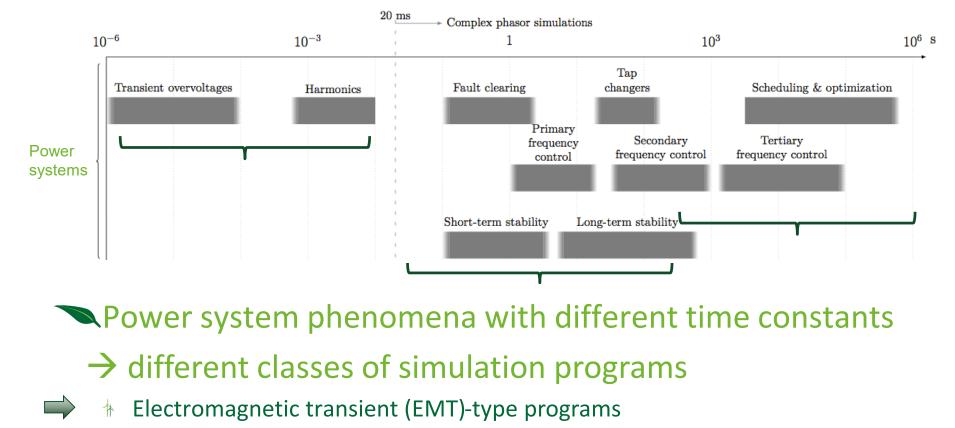
HVDC is key technology for large-scale integration of renewable energy sources Worldwide HVDC market is in excess of \$4 billion annually and rising

towards meshed HVDC grids

Research challenges

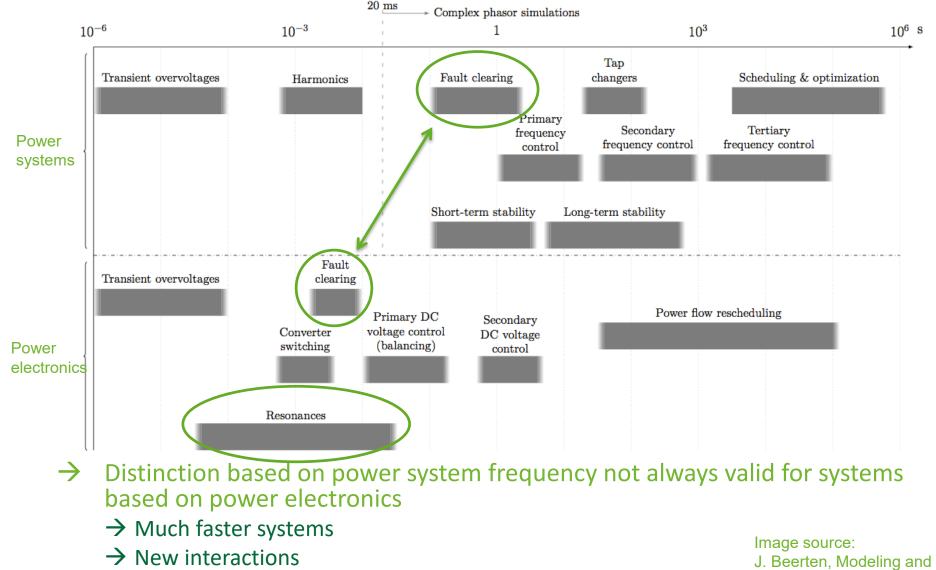
TODAY	IN FUTURE
From point-to-point connections	to multi-terminal and meshed grids
Protection From protecting the AC system	to fast-acting DC system protection
Control From one manufacturer (turnkey) per link	to multi-vendor interoperability
Operation From HVDC as "assistance" for AC grid	to AC & HVDC grid as parts of same grid
Grid code From complying with AC system requirements	to complying with both AC and DC grid requirements

- 1 - 1


Agenda

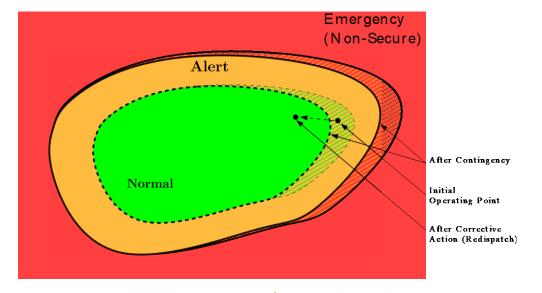
- **KU Leuven & EnergyVille**
- **N**HVDC: an historic perspective and new applications
- **N**HVDC, the key enabling technology for the supergrid
- New models are needed!
- Real-time simulation applications for HVDC & HVDC grid research

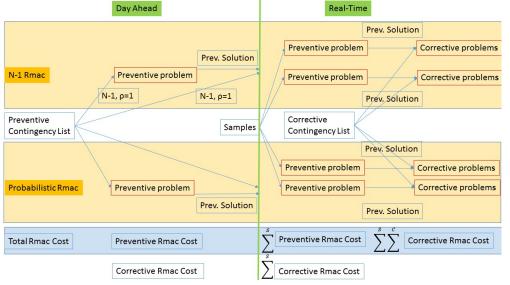
Where are we heading?


- Paradigms shifts for power system planning, operation, control & protection
 - * Renewables becoming standard (168 GW wind (2017) + 100 GW solar (2016))
 - Liberalized energy market
 - Continued electrification
 - Aging power system
- 🥆 Planning
 - * Flexibility (control action) accounting for uncertain investments while maintaining reliability
- Operation
 - * Reliable operations while considering uncertainty of renewable generation and flexible controls
- 🥆 Control
 - Power electronics-dominated systems with low inertia
- Protection
 - New technology and new behavior!
- Existing models and tools are inadequate to tackle problems

Power system modeling approaches

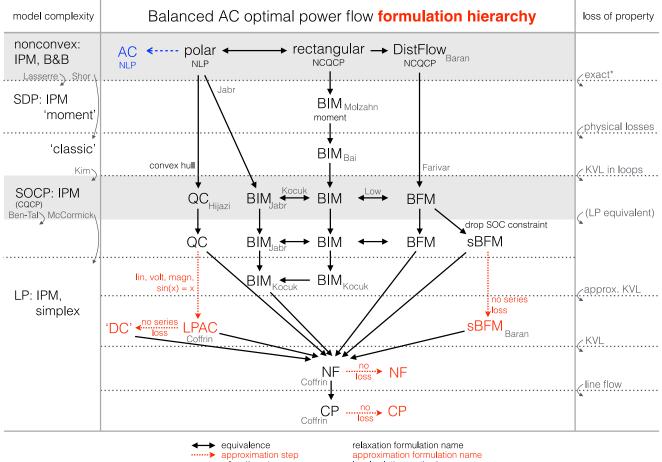
- Electromechanical stability (phasor-based) programs
- Steady-state power flow programs


New technology new models needed

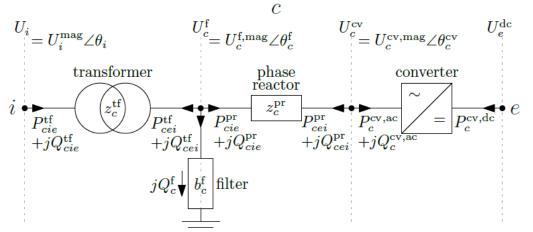


J. Beerten, Modeling and Control of DC grids

New problems ==> new methods and tools needed for operation


- Towards risk-based assessment
 - Deterministic ==> Probabilistic
 - Reliability criterion (N-1, N-k, Probabilistic)
- Including forecasts and energy storage
 - Multi-timestep
- Different control actions
 - HVDC active and reactive power control
 - Redispatch: Active and reactive power
 - Ancillary services
 - Line switching
 - Preventive and corrective actions
 - Operational rules
- Level of detail
 - Spatial and time granularity
 - Balanced or unbalanced flow
- Multiple stakeholders
- Simplifications in modeling (DC formulation, lossless,...)
- Visualization of outputs

New problems ==> new methods and tools needed for operation


- Towards risk-based assessment
 - Reliability criterion (N-1, N-k, Probabilistic)
 - Deterministic ==> Probabilistic
- Including forecasts and energy storage
 - Multi-timestep
- Different control actions
 - Redispatch: Active and reactive power
 - Ancillary services
 - HVDC and PST controls
 - Line switching
 - Preventive and corrective actions
 - Operational rules
- Level of detail
 - Spatial and time granularity
 - Balanced or unbalanced flow
- Multiple stakeholders
- Simplifications in modeling (DC formulation, lossless,...)
- Visualization of outputs

- approximation step
 relaxation step
 heuristic
- local solution method

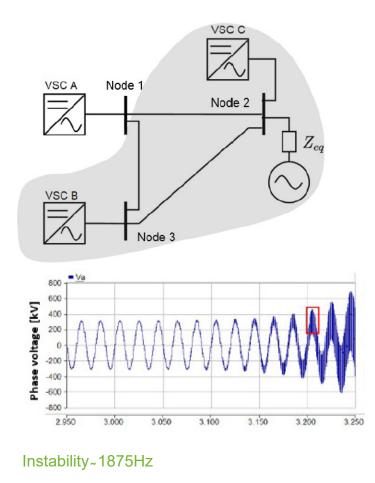
New problems ==> new methods and tools needed for operation

- Open source tool for solving hybrid AC/DC power systems
- Optimal Power Flow with both point-to-point and meshed and dc grid support
- Power Flow with both **point-to-point and meshed** AC and DC grid support
- Different formulations (detail/approximations)
- Julia/JUMP implementation: PowermodelsACDC.jl
- <u>https://github.com/hakanergun/PowerModelsACDC</u>
 <u>jl</u>

PARAMETRIZATION OF HVDC CONVERTER MODELS

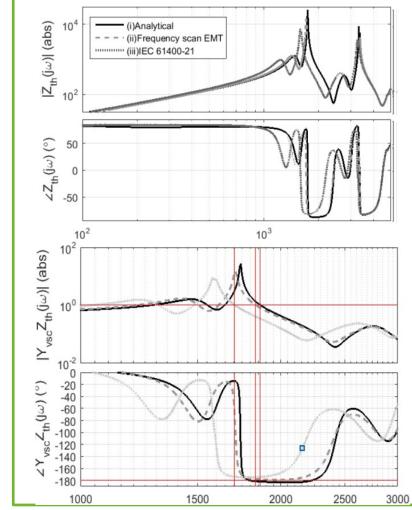
	transformer	filter	phase reactor	$Q_c^{ m cv,ac,min}$
MMC	$\{0, 1\}$	0	$\{0, 1\}$	±
VSC	$\{0, 1\}$	1	$\{0, 1\}$	±
LCC	1	1	1	≥ 0

- Next steps:
 - Including reliability constraints
 - Stochastic formulation
 - Planning applications


case	AC	SDP		QC	BIM SOC		BFM SOC		'DC'		
	obj (\$/h)	obj (\$/h)	gap (%)	obj (\$/h)	'gap' (%)						
case5_2grids	397.367	397.364	0.001	363.502	8.522	363.502	8.522	363.503	8.522	379.842	4.410
case5_acdc	194.139	194.119	0.010	183.763	5.345	183.763	5.345	183.763	5.344	178.314	8.151
case5_dc.m	17762.4	*	*	15037.8	15.339	15037.8	15.339	15037.8	15.339	17690.9	0.403
case24_3zones_acdd	: 150228	*	*	150156	0.048	150156	0.048	150156	0.048	144791	3.619
case5_dcgrid	55.052	55.050	0.004	55.050	0.004	55.050	0.004	55.050	0.004	51.179	7.036
case5_b2bdc	193.019	193.007	0.006	182.833	5.277	182.833	5.277	182.834	5.277	177.209	8.191
case39_acdc	41968.9	41965.7	0.008	41961.8	0.017	41961.8	0.017	41961.8	0.017	41413.5	1.323
case3120sp_acdc	2142635	*	*	2131097	0.539	2130988	0.544	2131097	0.539	2082166	2.822

New dynamic models needed for HVDC systems

Traditional tools include models for HVDC (recent versions)


- Available models in tools lack detail
- HVDC grid models mostly missing
- Single operating mode
- Industry (system operators) still focused on averaged models for most dynamic analysis studies
- Available models for studies are either:
 - Generic model (application range is limited)
 - * Vendor supplied models (under NDA), application range is limited!
- Correct representation of all elements, not just the converter (e.g. cable)

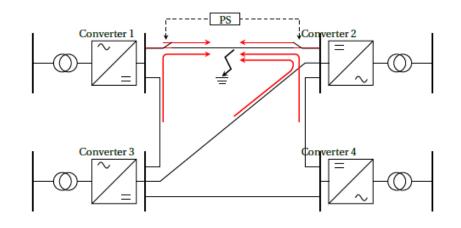
Network electromagnetic interaction studies with multiple converters (PhD Alejandro Bayo Salas)

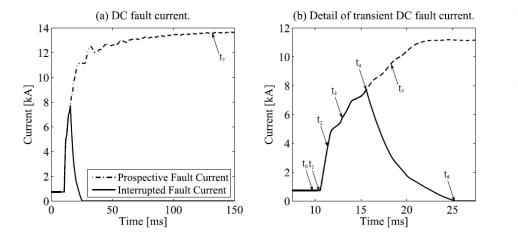
A. Bayo-Salas, J. Beerten and D. Van Hertem, "Analytical methodology to develop frequency-dependent equivalents in networks with multiple converters," 2017 IEEE Manchester PowerTech, Manchester, 2017, 6 pages.

Reproducing the instability with dynamic models

 According to standards
 EMT software: reproducing accurately EM dynamics
 Proposed methodology including

control dynamics Control dynamics influence on network resonances: necessary for harmonic studies

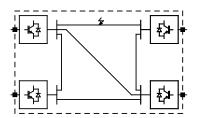

1. System stable, resonance at 1705Hz


2. System stable, resonance at 1834Hz

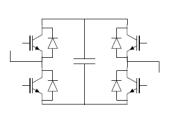
3. System unstable, resonance at 1864Hz

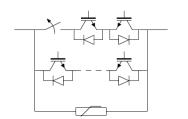
System stability is here a trade-off of representing with the same accuracy electromagnetic and control dynamics

Protection of DC grids Fault currents within a DC grid



Fault current:


- ✤ No zero crossings
- High rate-of-rise
- High steady-state value
- DC phenomena much faster than AC phenomena
- **NSC** behaves totally different from LCC


Different technologies exist to interrupt a DC fault current

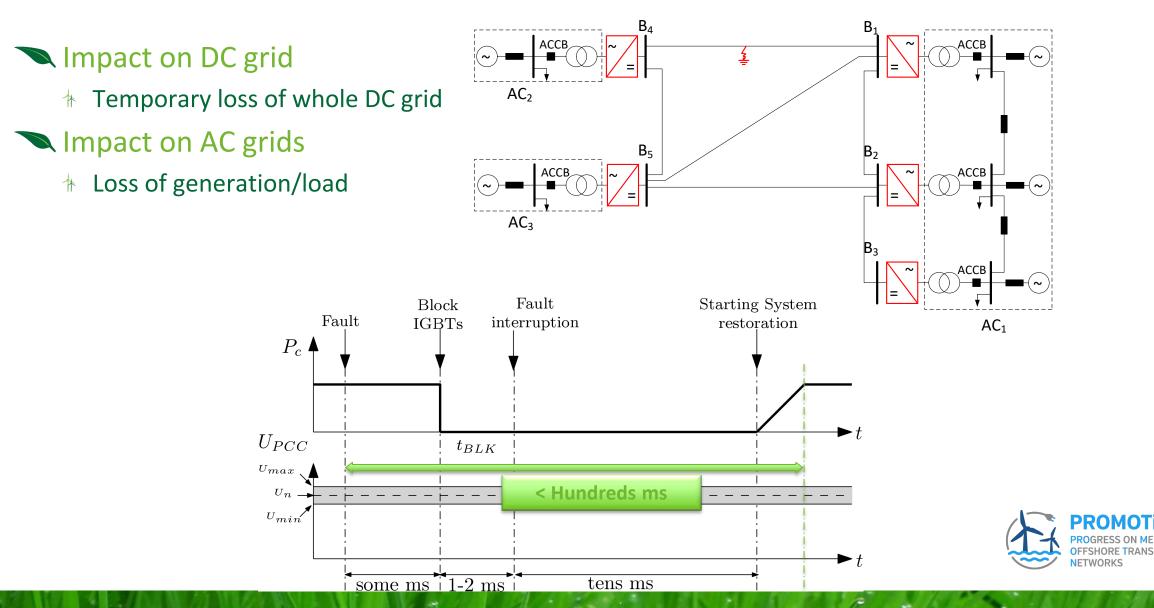
- Converter ac breakers
 - ✤ As used in existing projects
 - Slow (40-60 ms opening time)
 - Not selective

- Fault-current blocking converters
 - Higher losses compared with half-bridge
 - Fast (response within few ms)
 - Not selective

- **DC Circuit Breakers**
 - Operation times of 2-10 ms
 - ✤ Trade -off in losses vs. speed
 - Allows selective fault clearing



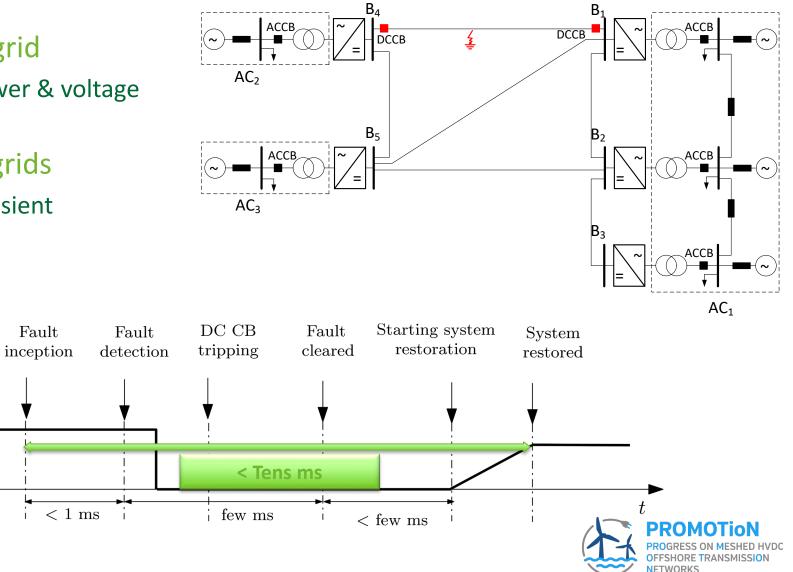
DC contingencies – DC fault using non-selective fault clearing (AC circuit breakers)


- Impact on DC grid
 - Loss of whole DC grid
- Impact on AC grids
 - Loss of generation/load

 P_{c}

 U_{PCC}

DC contingencies – DC fault using non-selective fault clearing (converter with fault blocking capability)

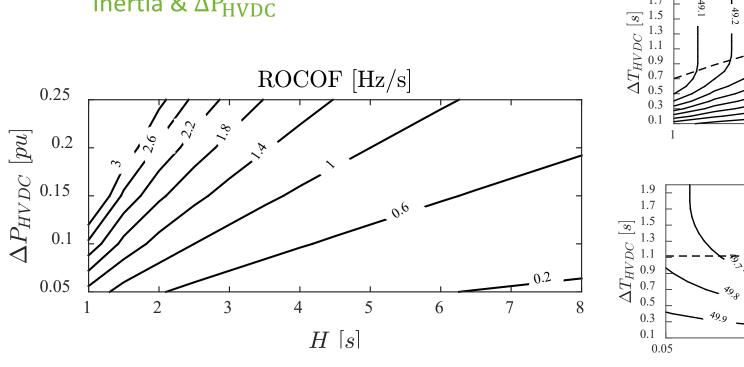

DC contingencies – DC fault using fully selective fault clearing

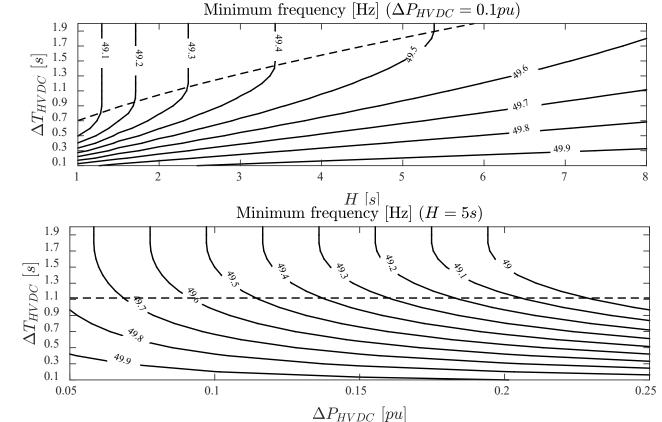
- Impact on DC grid
 - Temporary power & voltage • transient

 P_c

Fault

- Impact on AC grids
 - Very short transient

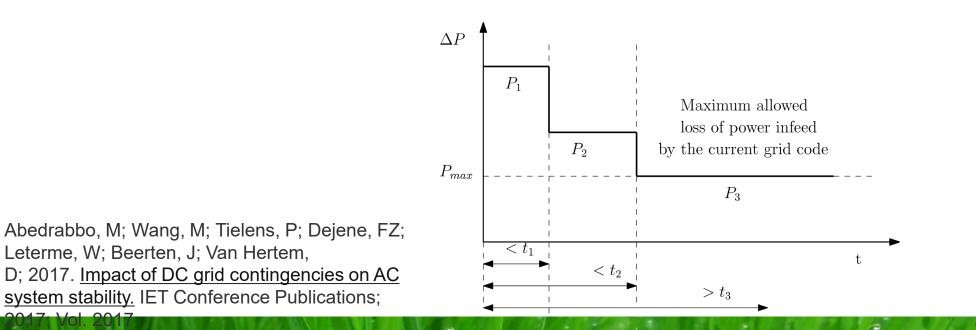



Impact on AC stability (frequency stability)

PROMOTION PROGRESS ON MESHED HVD OFFSHORE TRANSMISSION NETWORKS

- Parameters
 - Inertia constant H: 1-8
 - $\Delta P_{HVDC} = 0.05 0.25 \, pu$
 - $\Delta T_{HVDC} = 0.1 2s$
- ROCOF mainly depends on system Inertia & ΔP_{HVDC}

- Minimum instantaneous frequency (f_{min}) increases if power is quickly restored
 - Maximum allowed power restoration time



Possible future AC grid code

- Current AC grid code only defines maximum allowed permanent loss
 - E.g. UK grid code: That level of loss of power infeed risk which is covered over long periods operationally by frequency response to avoid a deviation of system frequency outside the range 49.5Hz to 50.5Hz for more than 60 seconds. Until 31st March 2014, this is 1320MW. From April 1st 2014, this is 1800MW.

> Possible future AC grid code:

- + Transient loss P_1 : restoration within t_1 (e.g. one cycle)
- Temporary loss P₂: restoration within t₂ (e.g. hundreds ms)
- Permanent loss P₃: equal to maximum allowed permanent loss

Agenda

- **KU Leuven & EnergyVille**
- **N**HVDC: an historic perspective and new applications
- **N**HVDC, the key enabling technology for the supergrid
- New models are needed!
- Real-time simulation applications for HVDC & HVDC grid research

Need for real-time simulations

- Given the increased complexity of , we can no longer depend on individual testing of components
 - Testing real device behavior where models are not available
 - Model validation
 - Multiple devices connected to a single system
 - Testing more than only power systems (communication, interfacing,...)
 - Multi-vendor interoperability
 - Training operators
 - Compliance testing (e.g. FAT)
- Real-time is not necessarily better
 - Model accuracy vs speed
 - Detail of the remaining system?

Examples Hardware-In-The-Loop for HVDC applications

NUDC replica models

- * Existing EMT models of HVDC converters are not sufficient
- * Strongly advocated by some (incl. TSO, HVDC experts & vendors) as standard
- * Entire control cubicles of the HVDC link (possibly with backup etc.)
- Evaluating interaction with AC system
- Important consequence!

IEDs

- ✤ AC and DC relays near HVDC stations
- IEC 61850 application of HVDC (future)

Other secondary equipment?

- Measurement equipment
- Independent DC grid master controller
- New components

★ ...

HVDC IED developed and tested

- Zedboard
 - Sufficient computing power to have several algorithms in parallel
 - Multiple I/O capabilities
- Device has been developed

Conclusions

- **N**HVDC is not a new technology
- Sut new developments result in strong growth
 - New converter types
 - New transmission needs (growth and RES)
 - More dynamic/flexible use of the grid
- **N**HVDC grids are feasible future option!
- Nowever, new models are necessary, for all time domains
- Several specific HVDC related application exist for real-time testing

Thank you for your attention!

Dirk Van Hertem

Dirk.vanhertem@esat.kuleuven.be