QW EnergyVille

HVDC grid developments

Need for new modeling tools and approaches

Prof. dr. Dirk Van Hertem
dirk.vanhertem@esat.kuleuven.be

KU Leuven / EnergyVille

TN SR Y N
slfﬁimmﬁ%n:himﬁ aal laafia/!Resstiafias
R Y YRR I (7 B .o o " TUEWISTT O Al et T N T A



mailto:dirk.vanhertem@esat.kuleuven.be

KU Leuven as university

~a Founded 1425

W Consistent recognized academic leadership
W Top ranked institute

~a, University World Rankings 2018: 48"

W Reuters: TOP 10 OF MOST INNOVATIVE UNIVERSITIES IN THE
WORLD
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University of Michigan System (US)
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Some KPI of KU Leuven

A COMPREHENSIVE KU LEUVEN IN OUR RESEARCH
UNIVERSITY NUMBERS

78 bachelor’s Founded in 1425 7,296

programmes : researchers
(74 taught in Dutch, 14 campuses in

4 in English) 10 cities across 475 million

Flanders euros research
expenses

205 master’s
programmes 16 faculties

(141 taught in Dutch, 5,098 PhD

62 in English, 2 in French)

57,286 students students

44 advanced _
master’s 20,524 staff 124 spin-offs

programmes members

(19 taught in Dutch, 24 in .
English and 1 in Spanish) +250,000 alumni
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The energy transition: EnergyVille’s vision

Sustainable Energy System

Distributed ‘ Technological , _
decentralized energy system

+
[ ——— J Cost reduction e Electricity dominant vector

e Coupling with heat, gas, ...
e Key role of cities (highly complex
urban context)

communication-

technology
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KU Leuven & EnergyVille

@ HVDC: an historic perspective and new applications
~® HVDC, the key enabling technology for the supergrid
~® New models are needed!

W Real-time simulation applications for HVYDC & HVDC grid research




History: Struggle of the (scientific) titans

At the dawn of electricity (1885 — 1890s): two

struggling parties
Thomas Edison
Nicola Tesla (and Westinghouse)

 War of the currents: http:
//www.youtube.com/watch?v=kn-nhXMhXQ4

* Edison was heavily opposed to AC
(Electrocution of condemned people was
shortly called “Westinghousing”)

« AC won because of:
Easy to transfer up to higher voltages
Rotating field
Breaking DC currents

Edison & Tesla (Source Wikipedia)
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HVDC in the power system

* Revival of DC from the '50s: High Voltage DC
e Used for the transport of bulk power over long distances
e Used for undersea (cable) connections

e Used for the interconnection of non-synchronous networks
e 50-60 Hz back-to-back: Japan, South-America
* Asynchrounous networks: Fr—UK, Scandinavia — Continental Europe, Europe — Russia,. . .

 Second revival from the second half of the "90s
* New markets (e.g. China and India)
» Switching/acting component at first were mercury valves and later thyristors . .
e Transistor based components (IGBT) for HVDC started in the 90’s
e (Cable connections become more important
* = New applications such as offshore
e +/-100 schemes




Main properties of HVDC installations vs AC AL BB D
‘';al 1 d 4

* Fewer cables are needed for equal power transmission
* Noreactive losses SI E M E N S

* No stability distance limitation
* No limit to cable length M
 Lower electrical line losses

* No need for maintaining synchronism

* Connecting different frequencies
e Asynchronous grids (UCTE — UK)
* Black start capability?

 Power flow (injection) can be fully controlled

e (Can be cheaper... U
* Transmission line/cable is cheap(er), converter is expensive hE% "R‘ }H{ “P) E

e Often turnkey projects

* “Special component” in the eye of the system operator Q> HYOSUNG
MITSUBISHI
"‘ ELECTRIC TOSHIBA




HVDC: two available converter technologies

W CSC or LCC technology ~®VSC technology

+  Uses thyristors +  Uses IGBT
+  Largest power ratings +  Power still limited
+ Cheapest & lowest losses +  More expensive + 1% / converter losses
+ Harmonics & large filter installation +  Clean sinus & small footprint
+  Mass impregnated cables +  XLPE cables
+  Active power control +  Active and reactive power control
+  Not for offshore +  Offshore possible

LCC HVDC - VSC HVDC -
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System sizes

HVDC system capabilities HVDC cable system capabilities

A Upc [kV] A Upc [kV]
1100 f === - cm e e e e e e 1100 f === - - = mm e
:
1000 1000 1 !
LCC HVDC OHL 10 GW} |
1
1
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7200 MW |
1
800 800 | |
( :
Jvsc Hvoe oHL .
- - |
600 VSC/LCC HVDC 600 VSC/LCC HVDC :
J Oil filled cable J Oil filled cable .
------------ -- 2400 MW P 2400 MW \
500 N 500 | A |
bl CZ;EOCMF\';//DC & : Jvsc HvDC cable b|eCz/;(§;oCMF\I/://DC a : Jvsc HvoC cavle :
400 ° E 2500 MW 400 | E 2500 MW E
1 = 1 - 1
1 1 1
.\ 1 ] .\ 1 1
300 \:\ [VSC HVDC 300 \:\ [VSC HVDC !
1 > < XLPE cable 1 > < XLPE cable i
200 \ 1150 MW 200 - : 1150 MW \
L Lo !
1 ] 1
100 i 100 . |
: : :
, | Ing kAl . | | Ipc kA
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New technologies provide more flexibility to operate the grid

~a HVDC technology has become essential ENTSO-E TYNDP 2014: >20 000 km DC by 2030
40 % of total investments

+ to connect remote offshore wind

+ to interconnect non-synchronized systems s e
overhead Line [

+ to reinforce the transmission system
+ Underground, also for short distances

Subsea Cable

upgrade

Underground Cable

Overead Line

AC

Subsea Cable | RGN
2 Underground Cable [l
~w Key technology for large-scale integration i e e m— —
of renewable energy sources

Figure 0-3 TYNDP 2014 investment portfolio - breakdown per technology

E-merge Alliance, IEEE Spectrum, Friends of the supergrid, ENTSOE
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Research vision

W From present and proposed point-to-point connections...

towards meshed HVDC grids

HVDC is key technology for large-scale

integration of renewable energy sources
Worldwide HVDC market is in
excess of $4 billion annually and rising




Research challenges

TODAY IN FUTURE

From point-to-point connections ... ... to multi-terminal and meshed grids
Protection

From protecting the AC system ... ... to fast-acting DC system protection
Control

From one manufacturer (turnkey) per link ... ... to multi-vendor interoperability
Operation

From HVDC as “assistance” for AC grid ... ... to AC & HVDC grid as parts of same grid
Grid code

From complying with AC system ... to complying with both AC and DC grid

requirements ... requirements
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Where are we heading?

W Paradigms shifts for power system planning, operation, control & protection
+ Renewables becoming standard (168 GW wind (2017) + 100 GW solar (2016))
+ Liberalized energy market
+ Continued electrification
+ Aging power system

W Planning
+ Flexibility (control action) accounting for uncertain investments while maintaining reliability

~w (Operation
+ Reliable operations while considering uncertainty of renewable generation and flexible controls

=\ Control
+ Power electronics-dominated systems with low inertia

W Protection
+ New technology and new behavior!

W Existing models and tools are inadequate to tackle problems




Power system modeling approaches

Power
systems

1076

20 ms

+ Complex phasor simulations

1073 1 10* 108 s
Tap
Transient overvoltages Harmonics Fault clearing changers Scheduling & optimization
Lrimar_‘y
| frequency Secondary Tertiary
comtrol frequency control frequency control
Short-term stability Long-term E‘cabilii:y‘ J

I

~wPower system phenomena with different time constants

- different classes of simulation programs

— Electromagnetic transient (EMT)-type programs

m) + Electromechanical stability (phasor-based) programs

m) + Steady-state power flow programs

Image source:
J. Beerten, Modeling and Control of DC grids



New technology = new models needed

20 ma + Complex phasor simulations
10-° 1073 1 10* 10° s
Tap
Transient overvoltages Harmonics Fault clearing changers Scheduling & optimization
. _~Frimary
frequency Secondary Tertiary
Power control frequency control frequency control

Short-term stability Long-term stability

Transient overvoltages

Power flow rescheduling

Primary DC Secondary
Comerter™ vamgreentl o |
Power switching (balancing) control
electronics I N

- Distinction based on power system frequency not always valid for systems
based on power electronics

- Much faster systems

Image source:

- New interactions J. Beerten, Modeling and Control of DC grids




New problems ==> new methods and tools needed for operation

Towards risk-based assessment
e Deterministic ==> Probabilistic
Reliability criterion (N-1, N-k, Probabilistic)

Including forecasts and energy storage

Multi-timestep
Different control actions

After Contingency

Initial
Operating Point

* HVDC active and reactive power control Afer Comentve

* Redispatch: Active and reactive power

* Ancillary services S

* Line switching e

* Preventive and corrective actions [Prev.Soluton] / Sorethe ovene
. N-1Rmac Preventive problem ! | revame skt Corrective problems

* Operational rules /// /Mprv_o.m :

Level of detail

Preventive o
Contingency List |\
X\

Samples

Corrective
Contingency List

* Spatial and time granularity e _\\
* Balanced or unbalanced flow — S

Multiple stakeholders

=

\ Preventive problem
Preventive problem

Prev. Solution

Prev. Solution

‘ Corrective problems
Corrective problems

. . e . . . . otal Rmac Cos reventive Rmac Cos - __Preventive Rmac Cost v orrective Rmac Cos
Simplifications in modeling (DC formulation, lossless,...) oatimes o 2 2., [Coneanemccon
Vi

Visualization of outputs




New problems ==> new methods and tools needed for operation

Towards risk-based assessment model complexity Balanced AC optimal power flow formulation hierarchy loss of property
* Reliability criterion (N-1, N-k, Probabilistic) nonconvex: AC <----- polar «—— rectangular — DistFlow
St e IPM, B&B NLP NLP NCQCP NcQop  Baran
e Deterministic ==> Probabilistic ... LSRR . SOLY | N l ............................................................. (ot
: SDP: IPM
e Including forecasts and energy storage moment BIMwozann
e b N e ¢Physical losses,
e Multi-timestep ‘classic’ BIM.
° D|fferent Control act|ons ALLLDN Y S (R NS [ ;;E?.”.V.?f ................................ (.KV.'—..‘Q.'?QP.S.....
SOCP: IPM Koouk Low
. . .  BIM_+— BIM <+«
* Redispatch: Active and reactive power B,gg_@gg eCommie QCac 1 Jabr BTM\d . ((LP equivalen)
. . v rop constraint
* Ancillary services ) Qc BIM_+— BIM <— BFM  sBFM
* HVDC and PST controls B |
in. volt. magn. BIM._ <+«—— BIM H
i . . ) sin(x) = x Kocuk H approx. KVL
° Line SWItChlng LP: IPM, e N S g GARRIANL
simplex ' v v/ose
* Preventive and corrective actions DC <H55™ LPAC SBFM g o
* Operational rules NE
. Coffrin line flo
o Level Of detall .......................................................... l .............................................................. gineflow ...
. . . Coffri Py Ig's(?'su) CP
* Spatial and time granularity o
<«+—» equivalence relaxation formulation name
) Balanced or unbalanced ﬂOW ------- » approximation step approximation formulation name

— relaxation step local solution method

-===> heuristic

. Multiple stakeholders
. Simplifications in modeling (DC formulation, lossless,...)
. Visualization of outputs



New problems ==> new methods and tools needed for operation

&

Open source tool for solving hybrid AC/DC power . Ut Uev Ude
= Umas = Uhmag /6 €= Uovmaggey
systems | | | |
transformer phase converter
Optimal Power Flow with both point-to-point and Ny (@) reactor ; ~ :
: A T e | = [poaet €
meshed and dc grid support PLL I Py, P = |pete

Q. +iQE | +5QP +j Qs +iQT

e Power Flow with both point-to-point and meshed . T
AC and DC grid support iy b |filter

. :
* Julia/JUMP implementation: PowermodelsACDC.|l T
transformer  filter  phase reactor P
*  https://github.com/hakanergun/PowerModelsACDC MMC  {0,1} 0 {0,1} +
gl VSC (0,1} 1 {0,1} +
LCC 1 1 1 =10
AC/DC OPF OBJECTIVE VALUES AND GAP. (NUMERICAL ISSUE INDICATED *)
e Next ste ps: case AC SDP QC BIM SOC BFM SOC ‘DC’
. . ope . obj ($/h)  obj (%/h)  gap (%) obj ($/h)  gap (%) obj ($/h)  gap (%) obj ($/h)  gap (%) obj ($/h) ‘gap’ (%)
* Includin g relia blllty constraints caseS_2grids 397.367  397.364  0.001 363502 8522  363.502 8522 363503 8522  379.842 4410
. . caseS_acde 194.139  194.119 0.010 183763 5.345 183.763 5.345 183.763 5344 178314 8.151
* Stochastic formulation case5_de.m 17762.4 * = 15037.8  15.339 15037.8  15.339 15037.8 15339 17690.9 0.403
. ) . case24_3zones_acde 150228 * 150156 0.048 150156 0.048 150156 0.048 144791 3.619
e Plannin g app lications case5_dcgrid 55052  55.050 0.004  55.050 0.004 55.050 0.004 55.050 0.004  51.179 7.036
caseS_b2bdc 193.019  193.007 0.006  182.833 5277 182.833 5277 182.834 5277 177.209 8.191
case39_acdc 419689  41965.7 0.008  41961.8 0.017 41961.8 0.017 41961.8 0.017 414135 1.323
case3120sp_acdc 2142635 * * 2131097 0539 2130988 0544 2131097 0.539 2082166 2.822



https://github.com/hakanergun/PowerModelsACDC.jl

New dynamic models needed for HVDC systems

w\ Traditional tools include models for HVDC (recent versions)
+ Available models in tools lack detail
+ HVDC grid models mostly missing
+ Single operating mode

W\ |ndustry (system operators) still focused on averaged models for most
dynamic analysis studies

W Available models for studies are either:
+ Generic model (application range is limited)
+ Vendor supplied models (under NDA), application range is limited!

N Correct representation of all elements, not just the converter (e.g.
cable)
TN R TSR NIE Y o VUiTER T TRy Y A DL S n e



Network electromagnetic interaction studies with multiple converters
(PhD Alejandro Bayo Salas)

Reproducing the instability with dynamic models

@ 10* [ | = (HAnalytical
,\/ % = = = (ii)Frequency scan EMT
VSC A Node 1 o wnwn (i) EC 61400-21
— | Node 2 3; 1. According to standards
Y, ' N ozt 2. EMT software: reproducing accurately
D EM dynamics
. 3. Proposed methodology including
2 S0r control dynamics
VSC B 3 -
— = 0 Control dynamics influence on network
_,\/ N 5 resonances: necessary for harmonic
Do studies
10
o A — 10°
&0 2
i 400 4 ] ] Ef', ;
e 0] fl VA f\ ﬂ\ {\ 3 TR 1. System stable, resonance at 1705Hz
] [ S 10 e BN
g ?; \j \ k \J U v d J . N.—‘E 2. System stable, resonance at 1834Hz
> - T I o \
& 00 >_°>’ = ) 3. System unstable, resonance at
f 00 —_ 10.2 | | 1 1864Hz
500 4 0 . r .
- el o Y TR |l B i \ L ] System stability is here a trade-off of
- % '] . .
& -gg I AT & 1 representing with the same accuracy
Instability~1875Hz \15 100 | ’\J electromagnetic and control dynamics
© 120 g -
5> 140 ;
A. Bayo-Salas, J. Beerten and D. Van Hertem, "Analytical methodology to develop N -160
frequency-dependent equivalents in networks with multiple converters," -180 —

2017 IEEE Manchester PowerTech, Manchester, 2017, 6 pages.

1000 1500 2000 2500 3000




Protection of DC grids
Fault currents within a DC grid

~w Fault current:
+ No zero crossings

+ High rate-of-rise
#+ High steady-state value
A Pl ofrasion Prtowrere - @ DC phenomena much faster than AC

(a) DC fault current.

Y

2 P - . ‘\ | phenomena

o L .
Z I ~a\VSC behaves totally different from LCC
X =
o U og

4_

2r |- Prospective Fault Current || 2

Interrupted Fault Current
00 50 100 150 0 IIO 1I5

20 25 -
Time [ms] Time [ms] * PROMOTioN
PROGRESS ON MESHED HVDC
v OFFSHORE TRANSMISSION
Lo ol

NETWORKS




Different technologies exist to interrupt a DC fault current

~a Converter ac breakers

H} Tl #+ As used in existing projects
| + Slow (40-60 ms opening time)
+ 3 £+ e

] N s + Not selective

N Fault-current blocking converters
H 3 #+ Higher losses compared with half-bridge
1 - # Fast (response within few ms)

+ Not selective

. DC Circuit Breakers
Ak + Operation times of 2-10 ms
+ Trade -off in losses vs. speed

+ Allows selective fault clearing

oS

PROMOTioN

PROGRESS ON MESHED HVDC
OFFSHORE TRANSMISSION
NETWORKS




DC contingencies — DC fault using non-selective fault clearing (AC circuit

breakers)
By
. : ACCB i~ | 7
* Impact on DC grid ; VAl :
. AC,
* Loss of whole DC grid
. B
 |mpact on AC grids S ‘ - o AL
* Loss of generation/load TR |
Start of
Block IGBTs & Open DC Close DC Voltage  Power
Fault trip ACCB switches ACCB restoration restoratio
p ACCB CLOSEN ACCB Open ACCB CLOSED
|Detect fault : i i
A Discriminate & interrupt Isolate fault [ I
fdult : |
5 ; | > Hundreds ms l § /;
Upcc i ﬁ ! t
L : i .
i i i (i“* PROMOTioN
! 1 ; ' I PROGRESS ON MESHED HVDC
| I | I | OFFSHORE TRANSMISSION
i : i , | > ™2/ NETWORKS

T t

_ | some ms z.lli_ﬁ" ii 'tens - hundreds of msi 40-80 ms




DC contingencies — DC fault using non-selective fault clearing (converter
with fault blocking capability)

& Impact on DC grid k4
+ Temporary loss of whole DC grid AG
& Impact on AC grids
+ Loss of generation/load
Block Fault Starting System
Fault IGBTs interruption restoration
P A
\ |
| | | |
| | | |
| | |
Upcc | | tpri | | : >t
|(A | | | N
mer K| | | | —
Un R = — | < Hundreds ms ‘———'———i———
Ui ] | | L ., PROMOTioN
! ! l I | ( PROGRESS ON MESHED HVDC
| | | | I OFFSHORE TRANSMISSION
| R i > ™=/ NETWORKS
| i




DC contingencies — DC fault using fully selective fault clearing

* |mpact on DC grid

 Temporary power & voltage
transient

* |Impact on AC grids

* Very short transient

Fault Fault
inception  detection

DC CB Fault Starting system System
tripping cleared restoration restored

SRR

. i .

< Tens ms / :
.; i >

i i

} »le t
(t ‘E PROMOTioN
PROGRESS ON MESHED HVDC
\—/ OFFSHORE TRANSMISSION

 few ms | < few ms
NETWORKS




(" PROMOTioN
Impact on AC stability (frequency stability) A?i\.,y

* Parameters o . . .
& Minimum instantaneous frequency (f.,) increases if

power is quickly restored
+ Maximum allowed power restoration time

* Inertia constant H: 1-8
* APyypc = 0.05 — 0.25 pu
* ATyypc = 0.1 — 2s

*  ROCOF mainly depends on system Minimum frequency [Hz] (APyvpo = 0.1pu)
Inertia & APyypc '

ROCOF [Hz/s|

(S

3
s
Minimum frequency [Hz| (H = 5s)
8 / LY L
- o o K o\,
A 1 =3 :
<] S R A NN T
= 09
L0 N 07 \79
6 7 8 03 | "
03 [ %9 n
0.1 I ; 1

0.05 0.1 0.15 02 025
APgype [pul




Possible future AC grid code

~w Current AC grid code only defines maximum allowed permanent loss

+ E.g. UK grid code: That level of loss of power infeed risk which is covered over long periods operationally by
frequency response to avoid a deviation of system frequency outside the range 49.5Hz to 50.5Hz for more
than 60 seconds. Until 31st March 2014, this is 1320MW. From April 1st 2014, this is 1800MW.

~w Possible future AC grid code:
+ Transient loss P;: restoration within t; (e.g. one cycle)
+ Temporary loss P,: restoration within t, (e.g. hundreds ms)
+ Permanent loss P;: equal to maximum allowed permanent loss

A
AP | |
| |
P :
: Maximum allowed
! loss of power infeed
S by the current grid code
P |
maxr | - — — — — Cr--——-—-=-=-= [
: : Ps
| |
Abedrabbo, M; Wang, M; Tielens, P; Dejene, FZ; I I _ . )
Leterme, W; Beerten, J; Van Hertem, <l | : ( t E gﬁgyoﬁlls?ywm
D; 2017. Impact of DC grid contingencies on AC | | <ty AL\ 0FFSHORE TRANSMISSION
I R ™=/ NETWORKS

system stability. IET Conference Publications; : | : > 13

\J



https://lirias.kuleuven.be/handle/123456789/572210
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Need for real-time simulations

W, Given the increased complexity of , we can no longer
depend on individual testing of components

+ Testing real device behavior where models are not
available

+ Model validation
+ Multiple devices connected to a single system

+ Testing more than only power systems (communication,
interfacing,...)

+ Multi-vendor interoperability
+ Training operators
+ Compliance testing (e.g. FAT)
W, Real-time is not necessarily better
+ Model accuracy vs speed
+ Detail of the remaining system?




Examples Hardware-In-The-Loop for HVDC applications
~& HVDC replica models

+ Existing EMT models of HVDC converters are not sufficient

+ Strongly advocated by some (incl. TSO, HVDC experts & vendors) as standard
+ Entire control cubicles of the HVDC link (possibly with backup etc.)

#+ Evaluating interaction with AC system

“+ Important consequence!

W\ [EDs
+ ACand DC relays near HVDC stations
+ IEC 61850 application of HVDC (future)

W Other secondary equipment?

+ Measurement equipment

A

Independent DC grid master controller

=

+ New components




HVDC IED developed and tested

Zedboard

 Sufficient computing power to have several algorithms in parallel
* Multiple I/O capabilities

Device has been developed

Configurable

Central or decenfral configuration

e Communication
* Ethercad or HER

Developing test qir
* Using similar t§pes of tests as for AC relays

Fault detection e il [ e

Selectivity
* Noise sensitivity

* Promotion KTH IED
e Mitsubishi IED
* Next step: MTTE testing

L ¥ & o - T e o % — -
al ( : X e ol =
| y B a = ® Fro.M T~ |
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—\ e — : 24 . - - - ———
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Conclusions

W HVDC is not a new technology
W But new developments result in strong growth

+ New converter types
+ New transmission needs (growth and RES)

+ More dynamic/flexible use of the grid
@ HVDC grids are feasible future option!
~® However, new models are necessary, for all time domains
W Several specific HVDC related application exist for realtime testing




“Q EnergyVille

Thank you for your attention!

Dirk Van Hertem
Dirk.vanhertem@esat.kuleuven.be
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