Industrial DC Transformer Modelling & Simulation in RTDS Simulator

R T D S . C O M

Technologies

Xianghua Shi RTDS Technologies Inc. Oct. 18, 2019

AGENDA

- ➢ **Background**
- ➢ **Operation and Control of DC Transformer**
- ➢ **DC Transformer Simulation in SUBSTEP**
- ➢ **DC Transformer Simulation in GPES**
- ➢ **Conclusions & Future Plan**

R T D S . C O M

DC Transformer

- **Power electronic transformer (PET)**
- **Isolation for input and output sides**
- **Bidirectional power flow if using fully-controllable switching devices**
- **High switching frequency** [→] **Reducing transformer's cost, volume and weight**
- **DC Transformer in series/parallel** [→] **Large system**

Applications:

- **Automotive**
- **DC grids**
- **Renewable energy conversion systems**
- **Integrating battery energy storage systems**
- **Medium-voltage or –power systems**

Power Electronics Simulation Capability in RTDS

SubStep Simulation Environment

- Only available on NovaCor hardware platform
- No limit on the number of resistive switching elements*
- No fictitious losses^{*}
- Full decomposition allows accurate calculations

GPES Simulation Environment

- A generic PE solver platform on GTFPGA
- Uses powerful parallel processing power of FPGA
- Can model power circuits with arbitrary circuit configurations
- Larger network (128 nodes and 256 branches) and smaller time step (400⁺ ns), e.g., dc breaker needs 110+ nodes and 200+ switches

Operation and Control of DC Transformer

R T D S . C O M

Dual-Active Bridge (DAB) Converter

Operation:

• Considering square-wave operation at both transformer's sides

 $0 < \varphi < \pi$, $P_{\text{DAB1}} > 0$: power delivered from v_{t1} side to v_{t2} side $-\pi < \varphi < 0$, $P_{\text{DAB1}} < 0$: power delivered from v_{t2} side to v_{t1} side \rightarrow Overall, the power is delivered from leading phase side to lagging phase side.

Leakage Inductance of Transformer

Design consideration of leakage inductance:

- Considering all the inductance provided by transformer's leakage inductance
- DAB real power **<** transformer's MVA to avoid overload for transformer

•
$$
V_{in} = k_1 * V_{tr1}
$$
, and $V_{out} = k_2 * V_{tr2}$

DAB real power: $\left| P_{DAB1} = \frac{V_{in} \cdot V_{out} \cdot n_{tr}}{2 \pi \cdot f_{sw} \cdot L_{lk}} \cdot \varphi \cdot \left(1 - \frac{|\varphi|}{\pi} \right) < S_{tr} \right|$ $\Bigg\vert \frac{V_{in} \cdot V_{out}}{V_{tr2}} \cdot \frac{1}{X_{lk} \cdot n_{tr}} \cdot \varphi \cdot \Bigg(1 - \frac{\vert \varphi \vert}{\pi}\Bigg) < 1$ *TR's turns ratio:* $\frac{V_{tr1}}{V_{tr2}} = n_{tr}$ ¹ • Typically, in rated operation, $V_{in} = V_{tr1}$, and $V_{\text{out}} = V_{\text{tr2}}$, i.e., $k_1 = 1$, $k_2 = 1$, $n_{\text{tr}} = V_{\text{in}}/V_{\text{out}}$ *TR's leakage inductance:* $X_{lk} = 2 \pi \cdot f_{sw} \cdot L_{lk} = \frac{X_{tr} \cdot V_{tr1}^2}{S_{tr}}$ $X_{tr} > \varphi \cdot \left| 1 \right|$ *Input and output voltage:* $V_{in} = k_1 \cdot V_{tr1}$ $V_{out} = k_2 \cdot V_{tr2}$ $\varphi_{sel} = 25 \text{ deg}$ $\varphi_{sel} \cdot \left(1 - \frac{|\varphi_{sel}|}{\pi}\right) = 0.376$ *Xtr:* transformer's leakage inductance in p.u.

 $X_{tr} > 0.376 \, \text{pu}$

Application: AC Grid → **MMC** → **DAB** → **Load**

H-bridge AC-DC stage:

- **Similar to control requirements of conventional MMC**
	- ➢ **Real power or capacitor voltage controls**
	- ➢ **Capacitor voltage balancing control**

DAB power/voltage control:

• It adjusts phase shift between v_{t1} and v_{t2}

Capacitor Voltage Balancing Control

NLC: **mainly used for a large number of submodules**

Multicarrier-based PWM: **can be used for either a large or small number of submodules**

 $T_o/4$

 $3T_o/4$

 $T_{\rm g}$

 $T_{\rm o}/2$

 -1.0

 $\mathbf{0}$

NEW Control Component Development for Capacitor Voltage Balancing – (SORTING METHOD)

- ➢ **Multicarrier-based PWM**
- ➢ **Firing Pulse Generator with Sorting**
- It supports up to 32 submodules in series
- It supports Level- or Phase-shift PWM
- Firing pulse arrangement in a word supports customer-specified
- It supports firing pulses for Half- or Full-bridge submodule switches and CHAINV5 MMC Model

Pso 1 0 0 1 9 Neg 0 1 1 0 6 Zero 0 1 0 1 5

1 0 1 0 10

31-

For Half-bridge with switches

For Full-bridge with switches **Level T4 T3 T2 T1 Value**

MMCFIRW

AVERAGE OF CAP

VOLTAGES

brge2 brge1

43

0 Bit

8 BRIDGES / FPWD

| --- | 4-bit FP| 4-bit FP|

NEW Control Component Development for Capacitor Voltage Balancing – (PI CONTROL METHOD)

➢ **Multiple PI Controller**

- It supports up to 32 PI control loops
- PI controller configuration supports RESET, FROZEN, and LIMITS
- It outputs individual modulation signal for each submodule

- ➢ **Flexible Phase-Shift PWM Firing Pulse Generator**
- It supports various PWM pattern:
	- o ONE modulation signal with multiple carriers
	- o Individual modulation signal with each carrier
	- o One or Two carriers for each modulation signal
- Firing pulse arrangement in a word supports customer-specified
- It supports firing pulses for Half- or Full-bridge submodule switches and CHAINV5 MMC Model

DC Transformer Simulation in SubStep

R T D S . C O M

System Parameters

System Control *DABs*:

- **Output voltage control**: generate Phase Shift for two sides of one DAB
- **Parallel operation**: use phase-shift PWM to increase harmonic frequency
- **Square-wave operation**: duty = 0.5

AC-DC stage:

- **Vcap control + current decoupled control**: generate 3-phase references
- **Vap balancing**
- **PWM method**: Unipolar dualfrequency SPWM

Phase-Shift PWM for DABs in Parallel Operation

The paralleled output voltage and current harmonic frequency is significantly increased, which potentially permits the decrease of output capacitance.

SUBSTEP Simulation (AC-DC + DAB)

- Resistive switching model
- Main time step: 45 us
- Sub-timestep: $45 \text{ us}/5 = 9 \text{ us}$
- \cdot # of modules per phase: $N = 6$ (18 H-bridges
	- + 6 Transformers)/phase
- Substep box: 112 models, 53 nodes

Circuit in One SubStep Box and Firing

of Modules: 6

R T D S . C O M 18

Phase-A Capacitor Voltage Balancing PI Control Implementation

Using newly developed control component

Using existing components in RSCAD Lib

Phase-Shift PWM Firing Pulse Generation

For 6 modules/phase

For AC-DC stage For DAB stage

IIIRTDS Technologies

SUBSTEP Simulation Results

Blocking → *Deblocking*

AC-DC stage operating waveform

of Modules: 6

SUBSTEP Simulation Results *Steady-state operation: Vout = 1.0 pu* [→] *Po = 2.25 MW*

Pout_SSfilt

2.250

PlossOPin

1.501

S1) VoA

1.483

≨

SUBSTEP Simulation Results *Dynamic operation: Vout = 1.0 pu* [→] *0.9 pu*

ி⊚∣் Subsystem #1|CTLs [V61PU] V61PURef V61PU1Ref 1.015 1.01 1.005 0.995 िक रहा है। 0.005 -0.005 -0.01 -0.015 **NOPUTRef | IdPURef** 1.2 1.1 0.9 0.8 **PpuFilt QpuFilt** $1.5₁$ 0.5 -0.5 0.08333 0.16667 0.25 0.33333 0.41667 Ω 0.5

AC-DC stage Vcap control loop DAB output voltage control loop

AC-DC stage operating waveform

R T D S . C O M

GPES Simulation in Small-dt Box (AC-DC + DAB)

- Main time step: 45 us
- Small timestep: 2.8125 us
- GPE timestep: 0.9375 us (3 sub-small timesteps)
- # of modules per phase: *N* = 6 (18 H-bridges + 6 Transformers)/phase
- GPES box: 102 branches, and 47 nodes

Circuit in One Small-dt Box

GPES

VoutPA

VoutNA

ľ

VSC

RECEIVING END

TERMINAL NAME:

REENDA3

∀

VSC

RECEIVING END

TERMINAL NAME:

REENDA4

GPES Simulation Results

Blocking → *Deblocking*

AC-DC stage operating waveform

of Modules: 6

GPES Simulation Results *Steady-state operation: Vout = 1.0 pu* [→] *Po = 2.25 MW*

AC-DC stage operating waveform

GPES Simulation Results *Dynamic operation: Vout = 1.0 pu* [→] *0.9 pu*

AC-DC stage operating waveform

R T D S . C O M

Conclusion

• **DC Transformer simulation**

- Implemented in SUBSTEP and GPES
- Operation with good performance
- Easily modify to different numbers of modules
- Per-unitization control and draft variables usage

Future Plan

- Release the developed control components to significantly simply the implementation of DC Transformer Simulation
- Release simulation examples of DC Transformer in SUBSTEP and GPES simulation environment

R T D S . C O M

THANK YOU!

QUESTIONS?

Life

 \bullet \bullet

Simulation in SUBSTEP

Power circuit connection with interfaces

Simulation in GPES in Small-dt Box

One Phase Circuit in GPES Box

Each module: 17 branches, and 8 nodes

哥 IN1A_di
- VVV
- 0.0001 **Module 1** Pha_GPES
0.0001 **Module 6**

Things to note:

- Transformer: base frequency equal to switching frequency
- Valve parameter for switches: vswit, iswit \rightarrow (recommended to be equal to RMS/peak voltage and current in the valve)
- Interface: use the interface inductance as large as possible
- Simulation time step: as small as possible

GPES environment:

• LC switching \rightarrow artificial losses

To reduce artificial losses:

- (1) Use small time step
- (2) Accurate vswit and iswit
- (3) Low switching frequency

DAB Simulation Notes

Transformer Base Frequency: same as the switching frequency

VALVE PARAMETERS:

- rvlon, rvlof: used to simulate system losses
- snbc, snbr: used to suppress numerical oscillations → should be properly selected
- **Recommendatoins: snbc*snbr = 2*SubtimeStep, and snbr = 500** Ω **to 2000** Ω

DAB Simulation Notes

Substep to Substep Interface:

• Introduce 1 sub-timestep delay

SUBSTEP

T-LINE NAME:

LINE PhB

SENDING END TERMINAL NAME: LINE3SE

• Stray capacitance: $C = sub\text{-}time\text{-}2/Ltl$

SUBSTEP TLINE CALCULATION BLOCK

T-LINE NAME:

LINE_PhB

LINE CONSTANTS: LOCAL. Travel TIme: 1 SUBSTEP

• Ltl: Interface inductance

Recommendations:

- Dividing large system through the branch with large inductance
- Put the interface inductance as large as possible
- Use simulation time step as small as possible

