DC Transformer Modelling & Simulation in RTDS Simulator

Technologies

RTDS.CO

Xianghua Shi RTDS Technologies Inc. Oct. 18, 2019

AGENDA

- Background
- Operation and Control of DC Transformer
- **DC** Transformer Simulation in SUBSTEP
- **DC** Transformer Simulation in GPES
- Conclusions & Future Plan

RTDS.COM

DC Transformer

- Power electronic transformer (PET)
- Isolation for input and output sides
- Bidirectional power flow if using fully-controllable switching devices
- High switching frequency → Reducing transformer's cost, volume and weight
- DC Transformer in series/parallel → Large system

Applications:

- Automotive
- DC grids
- Renewable energy conversion systems
- Integrating battery energy storage systems
- Medium-voltage or –power systems

Power Electronics Simulation Capability in RTDS

SubStep Simulation Environment

- Only available on NovaCor hardware platform
- No limit on the number of resistive switching elements*
- No fictitious losses*
- Full decomposition allows accurate calculations

GPES Simulation Environment

- A generic PE solver platform on GTFPGA
- Uses powerful parallel processing power of FPGA
- Can model power circuits with arbitrary circuit configurations
- Larger network (128 nodes and 256 branches) and smaller time step (400⁺ ns), e.g., dc breaker needs 110+ nodes and 200+ switches

Operation and Control of DC Transformer

RTDS.COM

Dual-Active Bridge (DAB) Converter

Operation:

• Considering square-wave operation at both transformer's sides

 $0 < \varphi < \pi$, $P_{\text{DAB1}} > 0$: power delivered from v_{t1} side to v_{t2} side - $\pi < \varphi < 0$, $P_{\text{DAB1}} < 0$: power delivered from v_{t2} side to v_{t1} side - \rightarrow Overall, the power is delivered from leading phase side to lagging phase side.

Leakage Inductance of Transformer

Design consideration of leakage inductance:

- Considering all the inductance provided by transformer's leakage inductance
- DAB real power < transformer's MVA to avoid overload for transformer

•
$$V_{\text{in}} = k_1^* V_{\text{tr1}}$$
, and $V_{\text{out}} = k_2^* V_{\text{tr2}}$

DAB real power: $P_{DAB1} = \frac{V_{in} \cdot V_{out} \cdot n_{tr}}{2 \pi \cdot f_{sw} \cdot L_{lk}} \cdot \varphi \cdot \left(1 - \frac{|\varphi|}{\pi}\right) < S_{tr}$ $\frac{V_{in} \cdot V_{out}}{V_{tre}^{2}} \cdot \frac{1}{X_{lk} \cdot n_{tr}} \cdot \varphi \cdot \left(1 - \frac{|\varphi|}{\pi}\right) < 1$ $\left(\frac{V_{tr1}}{V_{tr2}}=n_{tr}\right)$ TR's turns ratio: • Typically, in rated operation, $V_{in} = V_{tr1}$, and $V_{\text{out}} = V_{\text{tr}2}$, i.e., $k_1 = 1$, $k_2 = 1$, $n_{\text{tr}} = V_{\text{in}}/V_{\text{out}}$ TR's leakage inductance: $X_{lk} = 2 \pi \cdot f_{sw} \cdot L_{lk} = \frac{X_{tr} \cdot V_{tr1}^2}{S_{tr}}$ $X_{tr} > \varphi \cdot (1 -$ Input and output voltage: $V_{in} = k_1 \cdot V_{tr1}$ $V_{out} = k_2 \cdot V_{tr2}$ $\varphi_{sel} \coloneqq 25 \ deg \qquad \varphi_{sel} \cdot \left(1 - \frac{|\varphi_{sel}|}{\pi}\right) = 0.376$ X_{tr} : transformer's leakage inductance in p.u.

 $X_{tr} > 0.376 \ pu$

Application: AC Grid \rightarrow MMC \rightarrow DAB \rightarrow Load

H-bridge AC-DC stage:

 T_2

• Similar to control requirements of conventional MMC

 $C_1 \pm v_c$

- Real power or capacitor voltage controls
- Capacitor voltage balancing control

DAB power/voltage control:

v_s SCR

• It adjusts phase shift between v_{t1} and v_{t2}

Capacitor Voltage Balancing Control

<u>NLC:</u> mainly used for a large number of submodules

Multicarrier-based PWM: can be used for either a large or small number of submodules

 $T_{\rm a}/4$

 $T_{o}/2$

 $3T_{0}/4$

 T_{a}

-1.0K

NEW Control Component Development for Capacitor Voltage Balancing – (SORTING METHOD)

Multicarrier-based PWM

- Firing Pulse Generator with Sorting
- It supports up to 32 submodules in series
- It supports Level- or Phase-shift PWM
- Firing pulse arrangement in a word supports customer-specified
- It supports firing pulses for Half- or Full-bridge submodule switches and CHAINV5 MMC Model

For Half-bridge with switches

Name	Description	Value	Unit	Min	Max
poslevlhb	FP Value for Positive Voltage Level Output:	1		0	3
zerolevlhb	FP Value for Zero Voltage Level Output:	2		0	3

For Full-bridge with switches

Name	Description	Value	Unit	Min	Max
poslevlfb	FP Value for Positive Voltage Level Output:	9		0	15
neglevlfb	FP Value for Negative Voltage Level Output:	6		0	15
zerolevlfb	FP Value for Zero Voltage Level Output:	5		0	15

Level	T2	T1	Value
Pso	0	1	1
Zero	1	0	2

Level	T4	T 3	T2	T1	Value
Pso	1	0	0	1	9
Neg	0	1	1	0	6
Zoro	0	1	0	1	5
Zero	1	0	1	0	10

NEW Control Component Development for Capacitor Voltage Balancing – (PI CONTROL METHOD)

Multiple PI Controller

- It supports up to 32 PI control loops
- PI controller configuration supports RESET, FROZEN, and LIMITS
- It outputs individual modulation signal for each submodule

- Flexible Phase-Shift PWM Firing Pulse Generator
- It supports various PWM pattern:
 - o ONE modulation signal with multiple carriers
 - o Individual modulation signal with each carrier
 - $\,\circ\,$ One or Two carriers for each modulation signal
- Firing pulse arrangement in a word supports customer-specified
- It supports firing pulses for Half- or Full-bridge submodule switches and CHAINV5 MMC Model

PHASE-SHIFT PWM FIRING PULSE GEN. INDIVIDUAL MOD. WV PHSFTFP1
TWAVE FREQ: TANGLE
PHSFT ANGLE: 30.0
For Adjact. Brges
1.0 <u>թերերել</u>
NO. OF BRIDGES: 32
FOR EACH BRIDGE:
NO. OF CARRS: 2
PHSFT ANGLE: 180.0
No. OF MOD WVS: 32
#1: MODWV1A
DEBLK INPUT: DBLK
EACH FF = 1
ELSE 2
IF MODWV > CARR2:
EACH P = 8
ELSE 4
brge2 brge1
4-bit FP 4-bit FP
31 7 43 0Bit
8 BRIDGES / FPWD

Name	Description	Value	Unit	Min	Max
Name	PHASE-SHIFT PWM FP GENERATOR NAME:	PHSFTFP1v2			
brgetype	Firing Pulse to Drive Half or Full Bridge?	Full 💌		0	1
numbrge	No. of Bridges:	32		0	32
modeltype	Bridge Model: Separate Switches or CHAINV5?	Separate Switches	_	0	1
modwvtype	No. of Modulation Waves to All Bridges:	One 💌		0	1
numcarr1	No. of Carriers for Each Bridge:	One		1	2
phsft1	IF 2 Carriers, Phase Shift (>0 lead, <0 lag):	Individual	Degrees	-360.0	360.0
ndeblk	Overall De-block Signal (0-blk,1-deblk) Name:	DBLK			

DC Transformer Simulation in SubStep

RTDS.COM

System Parameters

Parameter	AC-DC Stage	DC Transformer (DAB)
# of modules	6 Full-bridge SMs in series	6 DABs in parallel
AC grid	10 kV (LL, rms), 50 Hz, $Z_{\rm s}$ = 3.5 Ω + $j\omega_{\rm o}$ *0.1 mH	N/A
DC output	1.5 kV, 4700 uF / Full-bridge	1.5kV, 50 uF / DAB
PWM modulation	Unipolar dual-frequency SPWM	Phase-shift PWM with duty = 0.5 (square-wave)
Carrier frequency	200 Hz	1.0 kHz
Transformer	N/A	1.5 kV:1.5 KV, 0.125 MW, 1.0 kHz, 36.7% leakage
Cap Voltage Balancing	PI control balancing method	N/A
Real power	2.	25 MW

System Control

DABs:

- Output voltage control: generate Phase Shift for two sides of one DAB
- Parallel operation: use phase-shift PWM to increase harmonic frequency
- **Square-wave operation**: duty = 0.5

AC-DC stage:

- Vcap control + current decoupled control: generate 3-phase references
- Vap balancing
- PWM method: Unipolar dualfrequency SPWM

Phase-Shift PWM for DABs in Parallel Operation

The paralleled output voltage and current harmonic frequency is significantly increased, which potentially permits the decrease of output capacitance.

Technologies

SUBSTEP Simulation (AC-DC + DAB)

- Resistive switching model
- Main time step: 45 us
- Sub-timestep: 45 us/5 = 9 us
- # of modules per phase: N = 6 (18 H-bridges
 - + 6 Transformers)/phase
- Substep box: 112 models, 53 nodes

Circuit in One SubStep Box and Firing

of Modules: 6

Phase-A Capacitor Voltage Balancing PI Control Implementation

Using newly developed control component

Using existing components in RSCAD Lib

Phase-Shift PWM Firing Pulse Generation

For 6 modules/phase

	For AC-DC stage	For DAB stage
Using existing components in RSCAD Lib		<complex-block></complex-block>
Using newly developed component	Friedde Friedde PRING PULSE GEN, W Pring Pulse	SUBSTEP SU

SUBSTEP Simulation Results

Blocking → Deblocking

AC-DC stage operating waveform

of Modules: 6

SUBSTEP Simulation Results

Steady-state operation: Vout = 1.0 pu \rightarrow Po = 2.25 MW

DAB output waveforms

SUBSTEP Simulation Results

<u>Dynamic operation: Vout = 1.0 pu \rightarrow 0.9 pu</u>

AC-DC stage Vcap control loop

DAB output voltage control loop

AC-DC stage operating waveform

RTDS.COM

GPES Simulation in Small-dt Box (AC-DC + DAB)

- Main time step: 45 us
- Small timestep: 2.8125 us
- GPE timestep: 0.9375 us (3 sub-small timesteps)
- # of modules per phase: N = 6 (18 H-bridges + 6 Transformers)/phase
- GPES box: 102 branches, and 47 nodes

Circuit in One Small-dt Box

GPES Simulation Results

Blocking → Deblocking

AC-DC stage operating waveform

of Modules: 6

GPES Simulation Results

AC-DC stage operating waveform

Steady-state operation: Vout = 1.0 pu → Po = 2.25 MW

GPES Simulation Results

AC-DC stage operating waveform

RTDS.COM

Conclusion

• DC Transformer simulation

- Implemented in SUBSTEP and GPES
- Operation with good performance
- Easily modify to different numbers of modules
- Per-unitization control and draft variables usage

Future Plan

- Release the developed control components to significantly simply the implementation of DC Transformer Simulation
- Release simulation examples of DC Transformer in SUBSTEP and GPES simulation environment

RTDS.COM

THANK YOU!

TTT

Simulation in SUBSTEP

Power circuit connection with interfaces

Simulation in GPES in Small-dt Box

One Phase Circuit in GPES Box

Each module: 17 branches, and 8 nodes

Ø IN1A_da Module 1 PhA_GPES Module 6

Things to note:

- Transformer: base frequency equal to switching frequency
- Valve parameter for switches: vswit, iswit
 → (recommended to be equal to RMS/peak voltage and current in the valve)
- Interface: use the interface inductance as large as possible
- Simulation time step: as small as possible

GPES environment.

• LC switching \rightarrow artificial losses

To reduce artificial losses:

- (1) Use small time step
- (2) Accurate vswit and iswit
- (3) Low switching frequency

DAB Simulation Notes

Transformer Base Frequency: same as the switching frequency

	rtds_ss_TRF S1PH.def								
SIGNAL N	IONITORING IN RT AND CC SIG	NAL NAMES	CORE AS	SIGNMENT					
CONFI	CONFIGURATION SINGLE-PHASE TRANSFORMER PARAMETERS								
Name	Description	Value	Unit	Min	Max				
vw1t	Rated Winding 1 RMS Voltage:	\$Vtr1	kV	0.001					
vw2t	Rated Winding 2 RMS Voltage:	\$Vtr2	kV	0.001					
MVA	Rated 1-Phase Transformer MVA:	\$Str	MVA	0.001					
frqt	Transformer Base Frequency:	\$fsw2	Hz	0.01					
rput	Total Winding Resistances:	0.0	pu	0.0					
xput	Total Winding Reactances:	\$XtrPU	pu	0.01					
mgIs1	Winding 1 magnetizing losses:	0.00001	pu	0.00001					
mgIs2	Winding 2 magnetizing losses:	0.00001	pu	0.00001					
	Update Ca	ncel Can	cel All						

rtde ee LEV2 V3 dof								
ENABLE MONITORING IN RUNTIME AND CC SIGNAL NAMES CORE ASSIGNMENT								
VALVE PARAMETERS DC CAPACITOR PARAMETERS								
VALVE FIRING PULSES INPUT NAMES AC REACTOR PARAMETERS								
VSC 2-LEVEL EMBEDDED BRIDGE CONFIGURATION								
Description	Value	L L	Jnit	Min	Max			
Valve ON Resistance:	0.005	Ohms		0.0001				
rvlof Valve OFF Resistance: 1.0e5 Ohms 1.0								
Snubber Series Capacitance:	\$Csnb1 MicroF 0.001							
Snubber Series Resistance:	\$Rsnb1	Ohms		1.0				
	rtds IONITORING IN RUNTIME ANI LVE PARAMETERS /E FIRING PULSES INPUT NA VSC 2-LEVEL EMBED Description Valve ON Resistance: Valve OFF Resistance: Snubber Series Capacitance: Snubber Series Resistance:	rtds_ss_LEV2_V3 IONITORING IN RUNTIME AND CC SIGI LVE PARAMETERS DC /E FIRING PULSES INPUT NAMES VSC 2-LEVEL EMBEDDED BRIDG Description Value Valve ON Resistance: 0.005 Valve OFF Resistance: 1.0e5 Snubber Series Capacitance: \$Csnb1 Snubber Series Resistance: \$Rsnb1	rtds_ss_LEV2_V3.def IONITORING IN RUNTIME AND CC SIGNAL NAME LVE PARAMETERS DC CAPACIT /E FIRING PULSES INPUT NAMES AC F VSC 2-LEVEL EMBEDDED BRIDGE CONFIG Valve ON Resistance: 0.005 Valve OFF Resistance: 1.0e5 Snubber Series Capacitance: \$Csnb1 MicroF Snubber Series Resistance:	rtds_ss_LEV2_V3.def IONITORING IN RUNTIME AND CC SIGNAL NAMES CC LVE PARAMETERS DC CAPACITOR PA /E FIRING PULSES INPUT NAMES AC REACTO VSC 2-LEVEL EMBEDDED BRIDGE CONFIGURATI Description Value Unit Valve ON Resistance: 0.005 Ohms Snubber Series Capacitance: \$Csnb1 MicroF Snubber Series Resistance: \$Rsnb1	rtds_ss_LEV2_V3.def IONITORING IN RUNTIME AND CC SIGNAL NAMES CORE ASSIGN LVE PARAMETERS DC CAPACITOR PARAMETERS VE FIRING PULSES INPUT NAMES AC REACTOR PARAMETERS VSC 2-LEVEL EMBEDDED BRIDGE CONFIGURATION Valve ON Resistance: 0.005 Ohms 0.0001 Valve OFF Resistance: 1.0e5 Ohms 1.0 Snubber Series Capacitance: \$Csnb1 MicroF 0.001			

VALVE PARAMETERS:

- rvlon, rvlof: used to simulate system losses
- snbc, snbr: used to suppress numerical oscillations → should be properly selected
- Recommendatoins: snbc*snbr = 2*SubtimeStep, and snbr = 500 Ω to 2000 Ω

DAB Simulation Notes

Substep to Substep Interface:

• Introduce 1 sub-timestep delay

SUBSTEP

T-LINE NAME:

LINE PhB

SENDING END TERMINAL NAME: LINE3SE

• Stray capacitance: C = sub-timestep^2/Ltl

SUBSTEP TLINE CALCULATION BLOCK

T-LINE NAME:

LINE_PhB

LINE CONSTANTS: LOCAL. Travel Time: 1 SUBSTEP

• Ltl: Interface inductance

Recommendations:

- Dividing large system through the branch with large inductance
- Put the interface inductance as large as possible
- Use simulation time step as small as possible

If_rtds_sharc_sId_TL16CAL								
PARAMETERS OF LINE WITH 1 SUBSTEP TRAVEL TIME								
CONFIGURATION CORE ASSIC			IGNMENT		DEE	BUG		
Name	Description Value Unit Min				Max			
local_nmcond	Number of conductors for 1 substep Tline		1		1	12		
Lgrd	Inductance of Ground Mode of the line:		\$Lac2	Henries	1.0e-7			
Rgrd	Resistance of the Groun	d Mode of the line:	0.0	Ohms	0.0			
Laer	If No. of Cond. > 1, Induc	tance of Aerial Modes:	10.0e-7	Henries	1e-7	1e8		
Raer	If No. of Cond. > 1, Resis	tance of Aerial Modes:	0.0	Ohms	0.0	1.0e8		
	·							
·								
	Updat	e Cancel C	ancel All					

