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Abstract — The inherent non-idealities, especially the 

time delay, in the interface of a PHIL simulation may lead to 
large simulation errors or even instabilities. Therefore, it is 
extremely important to have an effective way to evaluate the 
simulation accuracy in order to justify the reliability of a PHIL 
experiment. A generalized metric defining the error functions 
from two types of PHIL interface perturbations is proposed in 
this paper. Two simulation examples are performed to show 
the validity of the proposed method. 
 

1 INTRODUCTION 
ower hardware-in-the-loop (PHIL) simulation, where a 
piece of hardware equipment is incorporated into a 

simulation of a large system, provides many advantages that 
other analysis and testing methods do not provide. The most 
significant of these advantages are the ability to perform 
dynamic tests of the hardware device in an accurate 
representation of its service environment and the ability to 
conduct system studies incorporating the device. Therefore, it 
is receiving increased interest in power system and power 
electronics applications. In a PHIL simulation, a power 
apparatus can directly interact with a simulated environment. 
The dynamic and transient behaviors of the apparatus together 
with the simulated system are thoroughly investigated under 
all conceivable operating conditions. Hidden design flaws and 
defects can be detected and inadequate models can be refined 
while experimental risk and cost are minimized. A number of 
PHIL applications have been reported in [1]-[4]. A unique 5 
MW PHIL test bed is being established at the Center for 
Advanced Power Systems (CAPS) at Florida State University 
(FSU) to enable high-power PHIL experiments for 
comprehensive testing of power system components 
interacting with simulated all-electric ship power systems. 

However, due to the non-idealities of the interface between 
the hardware and software parts of the system, especially time 
delays, a PHIL simulation may be subject to artificial 
instabilities. (That is, instabilities that are artefacts of the test 
setup and are not present in a real system involving the test 
device and a hardware implementation of the simulated 
system.) An analytical explanation of the PHIL stability issue 
and advice on how to improve the PHIL stability via applying 
various interface algorithms are given in [5]. Furthermore, 
even a stable PHIL system does not necessarily ensure a 
meaningful simulation. The simulation must also be accurate 
to produce useful results. In fact, accuracy is the primary 

consideration in setting up a PHIL simulation, since instability 
can be considered as an extreme condition of inaccuracy. 

Evaluating the PHIL simulation accuracy is not trivial 
because no benchmark system is available for reference. Even 
if simulation models of the hardware under test (HUT) exist 
they will never match the hardware characteristic exactly. 
Otherwise, the correct result is already known and the PHIL 
simulation becomes unnecessary. [6] discussed the idea of 
using “transparency performance index” to evaluate the 
fidelity of an HIL simulation. This approach compares the 
difference between the actual HUT impedance and the 
equivalent HUT impedance seen from the other side of the 
interface. Smaller difference indicates higher transparency of 
the interface. However, this approach focuses on the 
performance of the interface only and neglects the fact that a 
PHIL simulation is a closed loop system. Therefore, it has 
limited applicability because we can easily find 
counterexamples (e.g., the unstable PHIL example discussed 
in [5]) in which high transparency may also lead to large 
simulation error. Two concepts of “performance mismatch 
(PMM)” and “probability of PMM” were described in [7] to 
evaluate the simulation performance. But the discussion stops 
at an abstract level, making it difficult to be applied in 
practice. 

In this paper, a metric for PHIL accuracy evaluation is 
established. Since the simulation error mainly comes from the 
perturbation caused by the non-ideal PHIL interface, the 
presented metric focuses on this type of error. The 
perturbations are categorized in two different types and an 
error function for evaluating each perturbation is defined. To 
validate the results, two simulation examples are given. As we 
show below, the proposed metric provides an effective 
approach to evaluating the accuracy of a PHIL simulation in 
practice. 

2 INTERFACE TRANSFER FUNCTION PERTURBATION 
Interface transfer function perturbation (TFP) is the first 

type of perturbation we will discuss in this paper. It expresses 
the non-ideality of a PHIL interface as a transfer function 
differing from unity gain. Examples of TFP include the time 
delay, the low pass filter properties, and any frequency 
characteristics other than unity gain of the PHIL interface.  

2.1 TFP for Open Loop Systems 
To evaluate the error caused by the TFP we start from a 

simple open-loop case in Figure 1. In this system, x is the 
input, G(s) is the correct (or desired) transfer function of the 
system while ΔG represents a transfer function perturbation. 
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The correct system output is y and the error caused by the 
perturbation is Δy. Note that G(s) here is a general transfer 
function and not the transfer function of the PHIL interface. 
Typically, G(s) relates two quantities in the simulation with 
each other. 
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x y
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Figure 1: An open loop system with a TFP (ΔG) 
A reasonable approach to evaluate the accuracy of this 

system is to compare the magnitude of Δy and y in the 
frequency domain. Assume an input, 
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An error function ETFP is defined as 
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The maximum value of ETFP within the frequency domain 
of interest signifies the largest error in the simulation, 
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where “sup” stands for “supremum”. 
When different accuracy levels are required at different 

frequencies a weighting function WO(jω) can be multiplied 
with the error function as shown in (5). 
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2.2 TFP for PHIL Systems 
The error function derived in the last section can not be 

directly applied to closed-loop systems (e.g., a PHIL system). 
To find the equivalent ΔG and G in a PHIL system, we 
consider the generalized block diagram of a PHIL system 
shown in Figure 2. G1 to G4 represent the transfer functions of 
the simulation systems and the hardware under test. Since an 
ideal PHIL interface has unity gain, zero time delay and 
infinite bandwidth, we use “1” as the desired transfer function 
of the PHIL interface and use an additive ΔGint(s) as its 
perturbation. As we will show later, the system output of 
interest can only be either y1 or y2 by appropriately defining 
the blocks from G1 to G4. The derived result is regardless to 
the individual expression of G1 to G4. In order to study the 
simulation accuracy, we will derive the error function for each 
of the two outputs. 
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x

y1 y2
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Figure 2: A PHIL system with TFP (ΔGint) 

Assuming y1 as the system output of interest and an input 

according to (1), the correct result of y1 when there is no TFP 
is: 
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where GLP(jω) = G4(jω)G3(jω)G2(jω)G1(jω) is the system open 
loop transfer function. In comparison, the resulting y1 with the 
interface perturbation is: 
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For simplicity, the argument “jω” is omitted from the 
equation above. By combining (6) and (7), we derive: 
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and 
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The error function derivation for y2 can be done in the 
same manner. 

|
)1(1

|
int

int
2_ GG

G
WE

LP
OyTFP Δ+−

Δ
=  

(10) 

It is interesting to note that both error functions are only 
determined by the product of G1 to G4 (the open loop transfer 
function GLP) instead of their individual expressions. This fact 
backwardly validates the generality of the system block 
diagram in Figure 2. 

The choice between ETFP_y1 or ETFP_y2 for accuracy 
evaluation depends on which system responses are of interest. 
It is also possible to combine the two error functions together 
as shown in (11) to find the maximum simulation error. 

),max( 2_1_ yTFPyTFPTFP EEE =  (11) 

3 INTERFACE NOISE PERTURBATION 
In contrast to the TFP, another type of interface 

perturbation comes directly from external noises injected into 
the system. The noise does not influence the system input x 
but will influence the system output y. We therefore 
distinguish this type of perturbation as an interface noise 
perturbation (NP). A NP may come from the high frequency 
harmonics generated by a PWM interface amplifier, the sensor 
noise or distortions in the signal transmissions. 

The error caused by a NP can be computed via the transfer 
function from that noise source to a certain output under 
interest. Suppose we know the magnitude of a noise and 
express it as v0ejωt, we then have 

tj
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as the error in the system output due to that noise. In this 
equation, Gyv represents the transfer function between noise v 
to output y. Again, the simulation accuracy can be evaluated 



 

from comparing the magnitude of the error and the original 
system output 
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Since the noise source is independent of the system transfer 
function, we have to find a way to evaluate the magnitude of 
v0 and y. By expressing v0 as the multiplication of an input 
weighting function WI(jω) and a normalized signal v0’ which 
has the same magnitude as y,  

00 ')( vjWv I ω=  (14) 

we can then define the error function for this NP 
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Again, if different accuracy levels are required at different 
frequencies, an output weighting function WO (jω) can be 
included in the NP type error function, yielding 

|)()()(| ωωω jWjGjWE IyuONP = . (16) 

Although the cancellation of v’0 and y is done mainly by 
approximation instead of by precise mathematical derivation, 
the NP error function provides a feasible approach to studying 
this type of simulation accuracy problem. 

4 SIMULATION EXAMPLES 

4.1 A TFP Type PHIL Accuracy Evaluation Example 
A PHIL simulation is performed to study the dynamic 

behavior of a simple resistive-inductive circuit. As shown in 
Figure 3 the original circuit is separated in to two parts. The 
voltage source vS and the source resistor RS are simulated in a 
real time simulator, while the load reactor LL and resistor RL 
are replaced by real hardware. To facilitate the interconnection 
between the two parts an ideal transformer model [5] is used. 
A voltage amplifier reproduces the “simulated” voltage (v1) as 
a “real” voltage (v2) and imposes it onto the load. The actual 
current (i2), drawn by the load, is measured and fed back into 
the simulated circuit by means of a modeled current source 
(i1). 

vS v2=v1+εi1=i2 +_v1

i2

Simulated system

Voltage Amplifier

Current Feedback
RS=1.0Ω

RL=2.0Ω

Hardware

LL=600μH

RL=2.0Ω

RS=1.0Ω LL=600μH

V1VS

Original Circuit

PHIL Implementation

 
Figure 3: A RL load PHIL system 

Assuming all the interface signals are transmitted ideally 
except for a simple time delay in the voltage amplification, 
we are able to draw the system block diagram in Figure 4. 
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Figure 4: System block diagram 

The accuracy evaluation of this system therefore becomes a 
TFP type problem. From the block diagram we derive 
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By applying (9) and (10), we can obtain the error functions 
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If we are only interested in system responses below 
1000 Hz, the weighting function is defined as: 
WO(jω)=1 for ω < 2π 1000 rad/sec 
WO(jω) = 0 for ω > 2π 1000 rad/sec 

 

To study the influence of interface time delay on the 
simulation accuracy the maximum TFP errors are plotted 
versus the delay time. Figure 5 shows that if the simulation 
error is required to be less than 10%, the maximum time delay 
allowed is about 15 μs. Evaluation of the error functions over 
frequency with a 20 μs time delay shows that the maximum 
values for both functions occur at 1 kHz, where they are cut 
off by the weighting function (Figure 6). 
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Figure 5: Maximum TFP errors versus time delay 
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Figure 6: TFP errors over frequency domain when the time delay is 20μs 

These results are validated through simulations. The entire 
PHIL system, including the voltage amplification and current 
feedback, is modeled and simulated in Matlab Simulink. 
Figure 7 illustrates the simulation result of the load current 
(i2) with 1 kHz input signal. As the figure shows, the 
simulated magnitude of the error current is about 10% of the 
magnitude of the correct current when a time delay of 20 μs is 
introduced in the interface,. 
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Figure 7: Simulation result with a 20 μs time delay 

Although the TFP error evaluation is fully based on 
magnitude comparison, it actually can provide a reasonable 
measure for the simulation error caused by phase shift. For 
example, the simulated PHIL load current in Figure 7 has 
almost the same magnitude as the correct current. But the TFP 
error function shows a non-negligible 10% error due to the 
phase error. This feature is important because in many power 

system simulation cases the phase shift can result in large 
errors in quantities such as in real and reactive power. 

4.2 A NP Type PHIL Accuracy Evaluation Example 
The PHIL system in Figure 3 can also serve as an example 

for the NP type error examination. We assume this time that 
the voltage is ideally amplified (without error) while the 
measured current is subjected to a sensor noise of 50 mA. Due 
to the large bandwidth of the sensor noise, we treat it as white 
noise and write: 
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The voltage v1 is the simulation output of interest and we 
suppose that through the experiment we find its magnitude at 
60 Hz is about 1V. Then the input weighting function is 
approximated by 
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The transfer function from the sensor noise to the output of 
interest is 
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By applying (16), the NP error at 60 Hz is computed to be 
3.35%. The simulation result of v1 in Figure 8  validates the 
computation. 
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Figure 8: Simulation result with current sensor noise 

5 DISCUSSION 
In order to guarantee stability most PHIL systems open 

loop transfer functions satisfy |GLP|<1. This condition can be 
considered equivalent to the “small gain theorem” in robust-
control theory. When the interface perturbation is reasonably 
small we can approximate 

1|1| int ≈Δ+ G  (17) 

and 
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Since 
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(9) and (10) will satisfy 
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These two equations provide a method to calculate the 
upper bound of the TFP error functions, derived using only 
the magnitude of the system transfer functions. Since 
obtaining only the magnitude information of a transfer 
functions is typically easier than deriving the complete 
expression including the phase information, it is an important 
advantage of the present method that it can still be utilized as 
an effective way to estimate simulation accuracy. Most PHIL 
systems will contain nonlinear elements or “black-box” 
components for which only approximate information will be 
available. While based on linear systems theory, the present 
method can be extended to non-linear systems by utilizing 
approximations such as the method of equivalent gains. From 
these gains, the range of the PHIL simulation error can then be 
estimated from the TFP. 

6 CONCLUSION 
This paper introduces a generalized metric defining the 

accuracy of PHIL simulations and derives a closed form 
permitting its computation. This method can provide a 
quantitative measure to judge the accuracy and hence 
reliability of a PHIL simulation result performed on an 
existing test bed. It can also be used to design suitable 
interfaces for achieving a desired accuracy in new 
installations. 

7 REFERENCES 
[1] E. Acha, O. Anaya-Lara, J. Parle, M. Madrigal, “Real-Time Simulator 

for Power Quality Disturbance Applications,” Proceedings .on  Ninth 
International Conference, vol. 3,  1-4 Oct. 2000 

[2] W. Zhu, S. Pekarek, J. Jatskevich, O. Wasynczuk, D. Delisle, “A Model-
in-the-Loop Interface to Emulate Source Dynamics in a Zonal DC 
Distribution System,” IEEE Transactions on Power Electronics, vol. 20, 
Issue 2, Mar 2005 

[3] Slater, H.J.; Atkinson, D.J.; Jack, A.G, “Real-time emulation for power 
equipment development. II. The virtual machine,” IEE Proceedings, vol. 
145, Issue 3, May 1998 

[4] Wu, X.; Lentijo, S.; Deshmuk, A.; Monti, A.; Ponci, F.; “Design and 
implementation of a power-hardware-in-the-loop interface: a nonlinear 
load case study,” Twentieth Annual IEEE Applied Power Electronics 
Conference and Exposition, 2005, vol. 2, March 2005 

[5] W. Ren, M. Steurer, T. L. Baldwin, “Improve the Stability and Accuracy 
of Power Hardware-in-the-Loop Simulation by Selecting Appropriate 
Interface Algorithms,” IEEE Industrial and Commercial Power Systems 
Technical Conference, Edmonton, ALB Canada, May 6-10, 2007. 

[6] M. Bacic, “On hardware-in-the-loop simulation,” Proceedings of the 44th 
IEEE Conference on Decision and Control, and the European Control 
Conference 2005, Seville, Spain, December 12-15, 2005 

[7] S. Ayasun, S. Vallieu, R. Fishl, and T. Chmielewski, “Electric 
machinery diagnostic/testing system and power hardware-in-the-loop 
studies," Proc. 4th IEEE Int. Symp. Diagnostics Electric Machines, 
Power Electronics Drives, Atlanta, GA, Aug. 24–26, 2003 


