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Abstract 
 Experimental design methodology is applied to the 

characterization of a transient simulation of the AC/DC 

conversion system of a notional all-electric ship in terms of 

parameters of the simulation. The process of constructing 

the surrogate models describing the behavior of the system 

during a load rejection transient scenario is presented and 

selected results from predictions from the surrogate models 

are presented. 

 

1. INTRODUCTION 

 The use of large-scale transient simulations for 

modeling and design of the next generation of all electric 

ships is motivated, to a large extent, by the closely coupled 

nature of these shipboard power systems and the potential 

for interactions between the many components and 

subsystems of which they are composed. High fidelity 

simulation models may provide an avenue to study various 

options related to design and performance over a range of 

system designs and topologies that would otherwise be 

prohibitively expensive to explore. However, there are a 

number of challenges in the practical application of these 

simulation models to system analysis and design. The time 

domain waveforms produced by the simulations must be 

characterized in terms of useful system performance 

metrics, and the influence of system topologies and design 

parameters on these performance metrics must be 

characterized and understood. Additionally, uncertainty 

analyses are needed to assess the behavior of the systems in 

the presence of random environmental variables, as well as 

to assess the uncertainty of the model predictions due to 

imprecise knowledge of the system or system components. 

Further, it is important to simultaneously assess the impact 

of errors introduced through the simulation algorithm (e.g. 

assess the role of the time-step size in fixed time-step size 

transient simulations) and to ensure that the results are 

relatively insensitive to artificial parameters of the 

simulations. These issues are made particularly challenging 

by the need to simultaneously consider a large number of 

potentially influential factors in the simulation. 

A generally accepted practice for carrying out the above 

analyses for computationally expensive simulations is to 

develop a surrogate model for the more detailed simulation, 

characterizing the input-output relationship with a relatively 

small number of simulation runs. General parametric studies 

of the system, including uncertainty analysis and design 

optimization, can then be carried out on the surrogate 

model, which can be evaluated with much less 

computational burden than the simulation. A number of 

approaches for representing such models have been 

proposed, ranging from simple polynomial models to 

numerous types of nonparametric models [1]-[5]. With all of 

these modeling approaches, the problem becomes one of 

efficiently sampling the parameter space in order to 

construct the surrogate model. Again, a number of criteria 

have been proposed for efficient sampling associated with 

different models ranging from the so-called alphabetic 

optimality criteria (e.g. D-, Q-optimality) of classical 

experimental designs, to uniform designs and maximum 

entropy designs that are often utilized for non parametric 

models [1]-[5]. Many of these approaches leverage 

knowledge of input parameter distributions or general 

complexity of the model in order to capture as much 

information as possible in a small set of samples. For any of 

these methods, however, it is difficult to adequately sample 

a high-dimensional parameter space. A number of factor 

screening techniques have been proposed for dealing with 

this problem, as well, each with its own set of underlying 

assumptions needed for success [6]. In [7], sequential 

experimental design methodology was employed in the 

characterization of the steady state behavior of the AC/DC 



conversion system of a notional all-electric warship. In this 

article, this approach is further applied to the 

characterization of the transient behavior of the system for a 

load rejection scenario. 

 

2. SYSTEM DESCRIPTION 

The work described herein is generally directed toward 

characterization and verification/validation of a large-scale 

electromagnetic transients simulation model of a notional 

all-electric warship, described in [8]. This time-domain 

simulation, distributed across nine racks of a real-time 

digital simulator [9], models numerous machines and 

converters, along with the hydrodynamics associated with 

the propulsion system with fixed time-step sizes on the 

order of 50 µs (subsystems with fast-switching converters 

utilize time-step sizes on the order of 2 µs). However, in 

order to gain insight into the behavior of this system, the 

work described herein, as well as that described in [7], 

focused on a flexible system of reduced size, composed 

primarily of the AC/DC conversion system, as illustrated in 

Figure 1. This reduced system models the 13.8 kV AC ring 

bus system as a single generator, utilizing a gas turbine 

engine model based on that described in [10]. The rated 

power of the generator is varied as a parameter of the 

simulation to reflect the impact of the ring bus configuration 

on the system behavior. In addition, the model includes a 

rectifier (PCM4) and two DC/DC buck converters (PCM1) 

supplying a single resistive load. Further, because it is 

necessary for the larger system to be split into multiple 

subsystems for implementation on the simulator described, 

the impacts of artificially splitting the system were also a 

point of focus. For this reason, the reduced system was 

implemented both as a single subsystem, as well as two 

subsystems split across the 1kV DC bus.  

As noted above, this work focused on characterization 

of the system behavior for a transient scenario in which the 

DC load is abruptly reduced. The dynamics of the load 

change were modeled very simply as a single pole filter. For 

this scenario, 27 parameters of the simulation, given in 

Table I, were studied. These included environmental 

variables such as the load power and generator rms voltage, 

uncertain model variables such as the generator reactance 

values, along with a number of control variables. 

Additionally, parameters specific to the method of 

simulation such as the time-step size were also considered. 

Logarithmic transformations were used for a number of 

these variables in order to accommodate larger ranges for 

the parameter values. In order to avoid needlessly expending 

runs in regions of the parameter space where model break-

down was expected, constraints were placed on some of the 

parameters. For example, the switching frequency for the 

buck converters was constrained as a function of the 

time-step size in order to avoid simulating excessively high 

switching frequencies for large time-step sizes. 
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Figure 1 AC/DC Conversion System 

 

 



TABLE I 

MODEL PARAMETERS 

Symbol Description Min Max 

Pload Initial load power (MW). 0.1 3 

Vrms-gen RMS voltage on the AC bus (pu). 0.95 1.05 

Sgen Generator rated apparent power (MVA). 5 100 

Xd’ Generator transient reactance (pu). 0.14 0.3 

Xd’’ Generator sub-transient reactance (pu). 0.081 0.13 

Qf-PCM4 Rectifier filter reactive power (MVAR). 0.01 2 

Vhr-PCM4 Voltage head room for rectifier (pu). 0.05 0.25 

XPCM4-ac Rectifier AC-side reactance (pu). 0.01 0.05 

fPCM4-dc Rectifier DC-side filter resonant 

frequency (Hz). 

100 1500 

CPCM4-dc Rectifier DC-side filter capacitance 

(mF). 

1 10 

τV-PCM4 Rectifier voltage measurement filter time 

constant (s). 

0.01 1 

kp-PCM4 Rectifier PI controller proportional gain. 0.5 2 

τPCM4 Rectifier PI controller time constant (s). 0.5 2 

Lx-rack Cross-rack transformer series inductance 

(µH). 

0.1 10 

kf-PCM1 Ratio of buck converter filter resonant 

frequency to buck converter switching 

frequency. 

0.18 0.75 

Lf-PCM1 Buck converter filter inductance (mH). 1 50 

fs-PCM1 Buck converter switching frequency 

(Hz). 

300 2000 

kp-PCM1 Buck converter PI controller proportional 

gain. 

0.5 2 

τPCM1 Buck converter PI controller time 

constant (s). 

0.5 2 

τLoad Time constant for load change (s). 0.01 0.001 

Hgen Generator inertia constant (MW*s/MVA) 3 5 

kp-lp Low pressure turbine governor 

proportional gain. 

2.81 7.9 

τlp Low pressure turbine governor time 

constant (s). 

0.112 0.356 

kp-hp High pressure turbine governor 

proportional gain. 

0.63 6.3 

τhp High pressure turbine governor time 

constant (s). 

0.079 0.79 

Vd-SA Surge arrestor discharge voltage (pu). 1.2 2.0 

∆t Time step size (µs). 15 150 

 

For this scenario, a number of response variables were 

derived from the time domain waveforms produced by the 

simulation in order to characterize the system behavior. 

Summarized in Table II, these responses primarily focus on 

overvoltages on the various busses and the frequency 

deviations exhibited by the high-pressure and low-pressure 

turbines of the generator. The maximum current through the 

surge arrestor and the energy dissipated therein were also 

considered. Additionally, a number of diagnostic response 

variables were studied, in order to attempt to identify 

compromised fidelity of the model. All time-domain 

waveforms were retained, however, in order to facilitate the 

creation and analysis of new response variables for further 

characterization. 

 

TABLE II 

RESPONSE VARIABLES 

Symbol Description 

∆VAC-max Maximum over-voltage on AC bus (pu). 

∆V1kv-max Maximum over-voltage on 1 kV bus (pu). 

∆Vload-max Maximum over-voltage at the load (pu). 

ISA-max Maximum instantaneous current through surge 

arrestor (kA). 

ESA Energy dissipated in the surge arrestor during the 

transient event (kJ). 

∆ωlp-max Maximum frequency deviation of low pressure 

turbine (pu). 

∆ωhp-max Maximum frequency deviation of high pressure 

turbine (pu). 

 

 

3. CONSTRUCTION OF SURROGATE MODELS 
 

3.1. Methodology 

The basic approach for characterization of the 

simulation is to simply run the simulation with a number of 

different combinations of parameter settings, calculate 

response variables for each one of these trials, and then 

construct a surrogate model for each response variable to 

capture the basic input-output relationships. The primary 

questions that arise relate to the number of runs needed, the 

placement of these runs (choice of parameter values), and 

the types of models to use for representation of the response 

variables. The sequential approach used in classical design 

of experiments seeks to address these questions by starting 

with a small number of runs and very simple models and, as 

necessary, progressively increasing the complexity of the 

design and models through a series of augmentations. By 

attempting to only expend the minimum number of 

simulation runs needed to characterize the process, the 

methodology is well suited to situations for which 

simulations are costly or time consuming. While this 

approach is not without its own set of limitations and 

requisite assumptions, the experimenter is afforded 

flexibility in configuring these assumptions for each 

experiment, allowing knowledge of the system to be 

leveraged in the process. Further, the experimenter is given 

the flexibility to test the validity of assumptions as the 

process progresses. Additionally, as these methods were 

primarily developed for physical experimentation, the 

ability to naturally extend the current work with a 

deterministic simulation to nondeterministic simulations and 

physical experiments (e.g. hardware-in-the-loop) also 

motivates the use of this approach.  

The particular strategy for this work, with a moderate 

number of parameters, was to initially make use of highly 

fractionated two-level factorial designs [1] to fit a linear 

model of the form 

 



bxx 0

T

0)( =y  (1) 

 

Here, y is the response variable (or some transformation 

thereof), b is a column vector of coefficients, and x0 is a 

column vector constructed from the parameter values 

specifying the point at which the response is to be predicted. 

The b coefficients can be estimated, from a set of 

observations, y, at a set of design points (parameter values), 

X, through least squares regression, for example, as 

 

( ) yXXXb
T1Tˆ −

=  (2) 

 

In general, X is some basis expansion of the parameters, 

which can include, for example, linear terms, interactive 

terms (between two or more parameters), and quadratic 

terms. In this case, the elements of x0 correspond to the 

basis expansion of the test points represented by the 

columns of X. A two-level, full factorial design is intended 

to estimate a model including linear and all interactive terms 

for all parameters by evaluating the simulation at each 

combination of two-level parameter values. These 

orthogonal designs seek to minimize the confidence 

intervals on coefficients of the model and model predictions. 

However, for a system of N parameters, this requires 2
N
 

evaluations of the simulation, while estimating a number of 

terms that are not likely to be influential. Fractional factorial 

designs significantly reduce the number of runs required by 

systematically aliasing certain model effects. This allows 

the experimenter to leverage knowledge of the system, 

along with previous experimental results, to eliminate non-

influential terms and infer which terms among aliased 

effects are truly influential. The design can be further 

augmented to break specific alias chains and identify an 

influential model term among a group of equally likely 

terms with which it is aliased. Such an approach is 

particularly effective if the model is dominated by terms 

associated with a small subset of the parameters involved. 

If the linear-interactive models fit through these designs 

do not sufficiently model the response, higher order 

polynomial models can be constructed by augmenting the 

factorial designs. For example, central composite designs 

[1] can be constructed by augmenting factorial designs with 

center runs (for which all parameters are held at a midpoint 

value) and axial runs (for which each parameter is held at 

each of its extreme values while all other parameters are 

held at a midpoint value). Such designs can be used to fit 

quadratic models in order to model more nonlinear 

responses. Further augmentation designs to accommodate 

specific models of higher order can be generated using 

algorithmic designs that make use of one or more optimality 

criteria. In this way, models of arbitrary complexity can be 

constructed in a sequential fashion by targeting specific runs 

to estimate specific terms of models. 

 

3.2. Experimentation 

A Resolution III fractional factorial design [1], 

consisting of 32 runs, was used to gain an initial estimate of 

linear and interactive effects and to verify that the model 

behaved reasonably for the ranges of parameters chosen. 

Resolution III implies that linear terms are not aliased with 

each other, but they are aliased with interactive effects. For 

the factorial runs, the high and low values for each 

parameter were limited to 60% of the range for the 

respective parameter. In order to obtain a Resolution IV 

design and eliminate aliasing of two-way interactive effects 

with linear effects, a full fold-over augmentation was carried 

out, consisting of 32 additional runs. At this point, all 27 

linear terms could be estimated, as well as 36 aliased 

interactive terms. From the estimated terms, along with 

knowledge of the alias structure and intuitive knowledge of 

the system, subsets of influential factors were identified for 

groups of response variables.  

Because some two-way interactive effects involving the 

influential parameters were aliased with each other, an 

augmentation to the design was needed to properly estimate 

these effects. Typically, fold-over designs in terms of single 

parameters could be used, but this augmentation technique 

has the disadvantage that it may target unnecessary terms, 

while doubling the number of runs for each fold-over 

augmentation. For this reason, a D-optimal design 

augmentation [1] was used to estimate the two-way 

interactions for the subset of influential parameters. A 

D-optimal design seeks to minimize the confidence bounds 

on model coefficients by choosing the augmented runs in 

such a way to maximize the determinant of the matrix given 

by X
T
X. For this augmentation, generated using [11], 64 

additional runs were expended in order to provide enough 

degrees of freedom for estimation of the model terms.  

In order to test for nonlinearity and lack of fit, the 

design was further augmented to complete a central 

composite design. Five center runs were obtained to 

stabilize the prediction variance and provide some estimate 

of the “pure error” for the simulation. While the simulation 

is deterministic in the sense that the time domain waveforms 

are unchanged for runs of the same configuration of the 

system, the moment at which the load change is initiated 

may cause small variations in the response variables. Thus, 

for each run the load change is applied at a random time 

after the simulation is brought to steady state, introducing 

some variance in what is otherwise a deterministic model 

which would only exhibit variance in the form of lack of fit. 

This relatively inexpensive exercise (in terms of runs) can 

potentially expose such variance with the simulation if it 

exists. Additionally, 54 axial runs were generated to 

estimate pure quadratic terms for each of the parameters. 



3.3. Model Fitting 

The complete design, consisting of 187 runs (32 + 32 + 

64 + 5 + 54) was used to construct quadratic models for 

several of the response variables. These models included 

linear terms for all factors, along with two-way interactive 

terms and quadratic terms for subsets of parameters of 

particular influence. As in [7], however, multicollinearity 

was introduced into the design through constraints placed on 

the parameters. Because multicollinearity can result in poor 

estimates of model coefficients with least squares 

regression, ridge regression was used to estimate the 

coefficients of the models by 

 

( ) yXIXXb T1Tˆ −
+= λridge

. (3) 

 

Here, λ is a tuning parameter used to effectively place a 

penalty on the magnitude of the regression coefficients [12]. 

For these cases, the method of Hoerl and Kennard was used 

to choose λ [13]. 

Although all of the surrogate models developed could 

benefit from further development, some of the models 

seemed to fit well enough for general interpretive use. 

Models such as the over-voltage on the DC busses and the 

energy dissipated in the surge arrestor exhibited R
2
 values 

and adjusted R
2
 values around 0.8. Figure 2 shows the 

maximum over-voltage at the load predicted by the 

surrogate model versus the values given from the 

simulation. 
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Figure 2 Comparison of surrogate model predictions to 

simulated values for the maximum over-voltage at the 

load 

 

This model used 64 degrees of freedom, allowing 123 

degrees of freedom to detect lack of fit. Additionally, the 

simulation was evaluated at 20 random test points in order 

to further test the predictions of the surrogate model. 

Although most of the test points were predicted reasonably 

well, several points were not predicted very accurately. 

Clearly, additional work is needed in order to obtain 

completely satisfactory models. This may include further 

experimentation, as well as the use of more flexible models. 

 

4. UTILIZATION OF SURROGATE MODELS 

Once satisfactory surrogate models have been 

constructed, a wide range of information can be obtained 

from these characterizations of the full simulation. Insight 

into the relative sensitivity of the simulation to parameters 

can be obtained by simple inspection of the magnitudes of 

model coefficients, or from more general metrics, such as 

the Sobol’ indices [2], [3], [6]. Further, uncertainty 

propagation techniques can be applied directly to the 

surrogate models in order to obtain confidence bounds on 

the predictions of the simulation in the context of the 

uncertainty associated with parameters of the model. Such 

information is important to improving the fidelity of the 

simulation model and properly contextualizing the 

predictions of the simulation. The surrogate models and the 

information derived from these analyses are vital to the 

verification and validation of the simulation model. 

Once the validity of the simulation model has been 

established, the surrogate models characterizing its behavior 

can be used in understanding the tradeoffs in the design of 

the system. An example using the surrogate models 

developed for the maximum over-voltage at the load and the 

energy dissipated in the surge arrestor is illustrated through 

Figure 3 and Figure 4. These figures illustrate the general 

trends exhibited by the simulation as the buck converter 

filter inductance and the discharge voltage for the surge 

arrestor are varied, while all other parameters are held 

constant. Figure 3 illustrates the reduction in the 

over-voltage associated with reduction of the filter inductor, 

as well as the reduction in the severity of the over-voltage 

provided by the surge arrestor. Figure 4, highlights the price 

that must be paid for this over-voltage reduction in terms of 

the energy that must be dissipated. By combining the 

predictions from a large number of such surrogate models, 

characterizing a wide range of steady state and transient 

scenarios, along with pertinent physical information, such as 

the size, weight, and cost of components, high fidelity 

simulation models may effectively lend themselves as useful 

design tools for large, closely coupled systems. 
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Figure 3 Predictions of the surrogate model for the 

maximum over-voltage at the load 
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Figure 4 Predictions of the surrogate model for the 

energy dissipated in the surge arrestor  

 

5. CONCLUSION 

Herein, the behavior of a simulation model of the 

AC/DC conversion system of a notional all-electric warship 

has been described for a transient scenario in which the load 

was abruptly decreased. The system behavior was 

characterized through several response variables, modeled 

as functions of a moderate number of parameters, through a 

sequence of experimental designs and augmentations. While 

the process of constructing satisfactory models is ongoing, 

several points can be made from the experiences thus far. 

• The sequential approach used for this work is 

particularly appealing because it attempts to make 

extremely efficient use of simulation runs by only 

resorting to more complicated designs and models 

as needed. Efficient use of runs is particularly 

important for transient power system simulations 

as typical PC based simulations may take several 

hours to execute [7], while the use of large scale 

parallel processor based simulators (as in this case) 

equivalently consumes significant resources in 

terms of the amount of time for which the 

simulator is occupied. Such considerations become 

even more important as the number of parameters 

increases for larger systems and the need arises to 

characterize the model for a number of scenarios. 

• Although the models constructed are not yet 

satisfactory, a significant amount of information 

has been obtained with a relatively small number 

of simulation runs. It is important to note that even 

a two-level grid in 27 parameters would require 

over 10
8
 simulation runs. Thus, although future 

work may require additional experimental runs, 

more complicated models, and/or forced reduction 

in the dimensionality of the problem, the 

information gathered may provide guidance in the 

choice of future actions needed to properly 

characterize the simulation. 

• Although for this work control gains for the 

various control systems in the simulation were 

considered as parameters, the ranges chosen for 

these parameters limited the impact of potential 

tuning of the controls on the simulation. In reality, 

the controls should be tuned for each particular 

design setting, and this is clearly an area for which 

additional augmentation to the process is needed in 

order to properly characterize the behavior of a 

simulation model. 

 

References 
[1] Myers, R.H.; D.C. Montgomery. 2002. Response 

Surface Methodology: Process and Product 

Optimization Using Designed Experiments. Wiley, New 

York. 

[2] Santner, T.J.; B.J. Williams; W. I. Notz. 2003. The 

Design and Analysis of Computer Experiments. 

Springer-Verlag, New York. 

[3] Fang, K.; R. Li; A. Sudjianto. 2006. Design and 

Modeling for Computer Experiments. Chapman and 

Hall/CRC, New York. 

[4] Hockenberry, J.R.; B.C. Lesieutre. 2004. “Evaluation of 

Uncertainty in Dynamic Simulations of Power System 

Models: the Probabilistic Collocation Method,” IEEE 

Trans. Power Systems, Vol. 19, No. 3, pp. 1483-1491. 

[5] Isukapalli, S.S.; S. Balakrishnan,; P.G. Georgopoulos. 

2004. “Computationally Efficient Uncertainty 

Propagation and Reduction using the Stochastic 

Response Surface Method,” in Proc. 43
rd

 IEEE 

Conference on Decision and Control, Atlantis, Paradise 

Island, Bahamas, Dec. 14-17, 2004, pp. 2237-2243. 

[6] Saltelli, A.; K. Chan; E.M. Scott. 2004 Sensitivity 

Analysis. Wiley, New York. 



[7] Langston, J.; A. Martin; J. Simpson; M. Steurer; N. 

Senroy; S. Suryanarayanan; S.L. Woodruff. 2007 

“Sequential Experimental Design Based Modeling of a 

Notional All-Electric Ship AC/DC Conversion System 

for Sensitivity and Uncertainty Analysis,” accepted for 

Proc. 2007 IEEE Electric Ship Technologies 

Symposium, Arlington, VA, May 21-23, 2007. 

[8] Langston, J.; S. Suryanarayanan; M. Steurer; M. 

Andrus; S. Woodruff; P.F. Ribeiro. 2006. “Experiences 

with the Simulation of a Notional All-Electric Ship 

Integrated Power System on a Large-Scale High-Speed 

Electromagnetic Transient Simulator,” in Proc. 2006 

IEEE Power Engineering Society General Meeting, 

18-22 June, 2006. 

[9] Kuffel, R.; J. Geisbrecht; T. Maguire; R. P. Wierckx; P. 

G. McLaren. 1995. “RTDS-a fully digital power system 

simulator operating in real time,” in Proc. 1995 IEEE 

Conf. on Communications, Power, and Computing, 

WESCANEX, vol. 2, pp. 300-305. 

[10] Hannett, L.N.; G. Jee; B. Fardanesh. 1995. “A 

Governor/Turbine Model for a Twin-shaft Combustion 

Turbine,” in IEEE Transactions on Power Systems, 

vol. 10, no. 1, February 1995. 

[11] Wheeler, R.E.; 2004. optFederov.AlgDesign. The R 

project for statistical computing 

http://www.r-project.org/ 

[12] Hastie, T.; R. Tibshirani; J. Friedman. 2001 The 

Elements of Statistical Learning: Data Mining, 

Inference, and Prediction. Springer-Verlag, New York. 

[13] Montgomery, D.C.; E.A. Peck; G.G. Vining. 2006. 

Introduction to Linear Regression Analysis. Wiley, 

Hoboken, N.J. 

 

 


