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Abstract

Modeling and simulation of different conditions are
needed for a better design of future Shipboard Power
Systems (SPS). Research work at Mississippi State
University (MSU) related to SPS protection aims to develop
an adaptive protective controller, which can adapt to
different protection schemes depending upon requirements.
The first step in this research work is to develop the relay
models. The developed relay model will be validated against
a commercial relay using hardware-in-the-loop (HIL)
simulation. HIL provides an opportunity for understanding
the behavior and validating model of the physical device.
This paper discusses HIL simulation for Schweitzer
Engineering Laboratories (SEL) distance relay using the
Real Time Digital Simulator (RTDS).
1. INTRODUCTION
Real time simulation is a commonly used tool for
studying power system behavior in response to events. This
kind of virtual test could uncover potential problems in
advance. Corrective measures could then be taken before
implementing the algorithm or logic in the real system. In
HIL simulation, some of the components of the virtual
power system are replaced with physical devices. HIL
technology is one of the methods to understand nonlinear
and dynamic behaviors of the system and helps in building
and validating a model for physical devices. Authors in [1]
presented experimental design for hardware-in-the-loop test
and HIL test has been used for testing electric machines in
[2]. Different approaches and preliminary design for HIL
using National Instruments (NI) devices have been
discussed in [3]. Real time digital simulator developments at
Western Area Power Administration (WAPA) for testing a
protective relay in real time have been presented in [4].

Shipboard Power Systems (SPS) have different
characteristics from terrestrial power systems. It is
important to investigate how best to adapt conventional
protection schemes to SPS [5]. HIL provides a platform to
test the performance of protection equipment under different
conditions. HIL simulation may also be helpful for the
designing the protection system for SPS. Real time
assessment for SPS protection has been presented in [6],
while the simulation of the electric ship in an efficient way
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has been discussed in [7].

A Real Time Digital Simulator (RTDS) [5] is an
effective tool for modeling and simulation of power and
control systems. RTDS hardware employs high-speed DSP
(digital signal processor) chips, operating in parallel, to
compute simulation results with simulation step sizes as
small as 2 microseconds. RTDS software called RSCAD
(http://www.rtds.com/softover.htm) includes a graphical
user interface and a detailed model library for power and
control system components. Researchers at Mississippi State
University (MSU) are working to develop adaptive
protective controllers for SPS protection, which can adapt to
different protection schemes depending upon requirements.
The development of relay models for over-current, distance
and differential protection is the first step in this process. To
validate the performance of developed models, efforts have
been made to develop hardware-in-the-loop simulation
platform in VTB-RT, NI and RTDS [8,9]. Issues and
challenges faced in using RTDS for HIL simulation of SPS
have been discussed in [10]. Modeling of impedance relays
using RTDS is presented in [11].

This paper describes the hardware-in-the loop testing of
a SEL-421 (manufactured by Schweitzer Engineering
Laboratories) high-speed transmission protection relay using
a simulated power system. MSU researchers successfully
connected the SEL 421 relay to an eight-bus power system
modeled on the RTDS. Test results obtained for different
types of faults are presented. Modeling of the relay is in
progress and the performance of the developed relay model
will be validated against the test results obtained from HIL
test here.

2. POWER SYSTEM TEST CASE IN RSCAD
An eight-bus power system model consisting of the
following components is used to test the relay.
1. 230kV AC Source;
2. A 203kV/230kV (A-Y) Transformer;
3. 100 km long ‘Traveling Wave’ type Transmission
Lines;
A 1200MVA, 15kV Synchronous machine
Speed Governor and Turbine
Static Exciter
Circuit Breakers.
. CTsandPTs
The test system has two parallel transmission lines
between source and load as shown in fig.1.
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Figure 1. 8-bus power system test case.

Breaker BRK1 is controlled by the physical SEL 421
relay, and breaker BRK2 is controlled by the logic designed
in software. The CT and PT were modeled in detail to
reflect real system characteristics.

3. SEL -421 DISTANCE RELAY

The SEL-421 is a high-speed transmission line
protective relay that includes single-pole tripping, three-pole
tripping, reclosing with synchronism check, circuit breaker
monitoring, circuit breaker failure protection, and series-
compensated line protection logic.
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Figure 2. ACSELERATOR settings for SEL 421
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Settings for the SEL-421 relay can be set based on
power system characteristics using the ACSELERATOR
software as shown in fig. 2. [12]

4. HARDWARE SETUP AND CONTROL LOGIC
Fig. 3 shows the interfaced signals between the relay
and the RTDS. The relay senses the voltages and currents
from the RTDS system, and in case of any fault, it sends out
the trip and reclose signals to the simulated circuit breakers
in the power system.

Terrestria
Power
System Sensors:
Voltages
= and
Currents

Actuator:

q_ Trip SEL 421 Z-Relay
o Signal for  (Hardware Controller)
Circuit
~ Breakers

Figure 3. HIL setup using RTDS for SEL 421

Fig. 4 shows how simulated voltage and current signals
are sent to D/A converters on the RTDS. The analog signals
are then connected to the relay’s inputs. SEL relays can be
tested with low-level signals or high-level signals. RTDS
has the ability to be directly connected to the relay using a
low-level signal. An amplifier can be used, if the relay
needs to be tested with a high-level signal. In this research,
low-level signals were used to interface with the relay. Trip
and reclose signals from the relay are interfaced to the
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RTDS via digital input ports. Fig. 5 shows how the digital
input signals are interfaced in the simulation.
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Figure 4. Analog output from power system to relay
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Breaker (BRK1) is directly controlled by the signal
received from the physical relay for each phase. Control
logic to operate the breaker based on signals from the relay
is shown in fig. 6. Figure 7 shows fault control logic to
simulate the different types of faults. For a single-phase line
to ground fault, BRK1 and BRK 2 should open and reclose
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once the fault clears automatically for each phase. In the
case of a two-phase line to ground fault, all 3 phases of
BRK1 and BRK2 should open but should not reclose
automatically even after the fault clears.

FLTOUR

POINT ON WAVE " Faut Type 0 H

DELAY

Initial Fault

Sequence Selection

Fault Control Logic

Figure 7. Fault control logic for eight-bus power system

5. SIMULATION RESULTS

Single phase line to ground and two-phase line to
ground fault were simulated at a 50% distance on the
transmission line in the eight-bus test case. Simulation
results obtained for these faults on different phase have been
presented here. Simulation results show expected results and
successful operation of commercial relay. These results will
be used to validate the developed relay model in future
research work. Figure 8 shows the voltage, current
waveforms and breaker status without any fault. The
simulation results show that ‘FAULT’ signal is equal to O,
which means no fault at this time and the breakers BRK10C
(BRK1) and BRK20C (BRK2) statuses are equal to 7,
which is “111” in the binary form. The first bit of binary
form stands for the breaker status for phase C, the second
one for phase B and the third one for phase A. “1” means
that the breaker is closed, and “0” means open. Therefore,
for no fault, all breakers are closed.

Simulation results for single-phase fault on ‘phase A’
are shown in fig. 9. Current on ‘phase A’ becomes high
when the fault is initiated and becomes zero when the relay
operates and the breaker opens. In this case the value of the
“FAULT” signal is equal to 1. The breaker BRK10C would
open about 1.7 cycles after the fault, and the breaker
BRK20OC would open after approximately two cycles after
the fault. Figures 10 and 11 show similar results for a
single-phase fault on ‘phase B’ and ‘phase C’. The transient
response in case of two-phase line to ground fault is shown
in fig. 12. Fault on ‘phase A and phase B’ to ground was
simulated. Relay signals open the breakers and the current
becomes zero for all 3 phases. The breakers will not reclose
until the manual reclose button is pressed. Simulation
results for faults on ‘phase A and phase C’ to ground and
also ‘phase B and phase C’ to ground were obtained in a
similar manner but have not been shown here due to space
limitation in paper.
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Figure 10. Single-phase fault on phase B
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Figure 12. Two-phase fault on phase A and phase B

6. SUMMARY

Hardware-in-the-loop simulation to test a SEL 421
distance relay has been presented in this paper. Hardware
setup, control logic and power system test case development
have been discussed in detail. Simulation results for single-
phase line to ground and two-phase line to ground faults
have been presented. Hardware-in-the-loop tests for
differential relay and over-current relay using RTDS are
part of the current research activities at Mississippi State
University (MSU) in an effort to develop an adaptive
protective relay for Shipboard Power System (SPS).
Modeling of different types of relays is in progress.
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