
General-Purpose Data
Recording

Mark Stanovich, James Langston, Michael Sloderbeck,
Matthew Bosworth, Karl Schoder, Mischa Steurer

Center for Advanced Power Systems
Florida State University

Partially supported through ONR under
grant N000141410198 (ESRDC)

Overview

2

Data

Simulated Power
System

 Physical Equipment

RTDS: Rest of System Simulation

Data Recording at CAPS

• Model and Device Characterization
• Demonstration
• Fault recording
• Contexts

– RTDS only simulation
– Co-simulation
– PHIL
– CHIL

Implementations

• RSCAD plot captures
• RSCAD script reading and recording

runtime meters
• External recording scopes (data acquisition

system)
• GTNET stream data to server
• Listener on another PC

Simulation

Desirable Functionality of Data
Recorder

• Continuously record data over reasonably long time
intervals (hours)

• Vary sampling rates (down to every time step)
– per signal
– Within single capture

• Efficiently analyze recorded data
– Loading time for post processing analysis (e.g., Matlab)
– Online analysis

• Trigger
– Manual
– Fault events
– Pretrigger
– Continuous

Desirable Functionality of Data Recorder
(cont'd)

• Ability to interact with runtime while recording especially
important during PHIL experiments

• Low network congestion
– Computer executing the runtime has a slow/congested network

connection
– High data rates may cause congestion

• Vary capture rates
– Per signal
– Within single capture

• Commodity hardware and software

Example Use Case

7

5 MW Dynamometer and
Gear Box

8

 Physical Equipment

RTDS: Rest of System Simulation

GTFPGA
Pulse Counter

GTFPGA
Logger

Length of time between
pulses

Signals

LOGGER IMPLEMENTATION

9

Logger Implementation

• ML605 and GTFPGA
• Computer running Linux

RTDS ML605 Dell 1U
Server

fiber Gigabit Ethernet

Software and Hardware Overview

• ML605 Xilinx FPGA development board
– GTFPGA
– Xilinx Emac coregen
– VHDL

• Dell 1U rack server
– Linux with PREEMPT_RT patches
– Python/Cython, C++
– SSH

Fiber to Ethernet

• RTDS protocol over fiber to frame-level Ethernet (1 gigabit)
– Less protocol overhead
– Not TCP/IP, so not routable but can still be switched

• ML605 - high-speed transceivers
• RTDS interface block
• Xilinx emac coregen

RTDS
Interface

Xilinx Emac

Gigabit
Copper Ethernet

Fiber

Communication Protocol Between
FPGA and Server

• Logger initiates communication by sending
data to FPGA

• GTFPGA responds with a frame containing
the values from latest time step

• Send a frame every time step and process
the received frame (~50 microseconds)

• Vanilla implementation has large variability
(10s of microseconds to milliseconds)

Tasks

• Ethernet communication with short deadline
• Process received frames

– Check if data should be logged
– Check for missed time steps
– Format data for storage

• Write data to disk
• Write messages to screen
• Server for user to retrieve recorded data

Meeting Deadlines

• Rewrite portions in C++
• Multiple threads of execution

– C++ thread communicating with ML605
– Python thread processing frames

• Check if data should be logged
• Send data to another thread to write to disk

– C++ thread logging messages to console

Linux Configuration

• Vanilla Linux with PREEMPT_RT patches
– Better preemptibility and thread prioritization
– More deterministic time to execute an operation (at the

expense of lower average-case performance)
• Isolate cores and pin threads to separate cores

– Efficient cache usage
– Minimize context switches

• Disable hyperthreaded (virtual) cores

Meeting Deadlines

• Lockless communicating between threads
– Use processor instructions for synchronization

rather than spinning or OS
– Single reader, single writer queue

• Assign kernel thread priorities
– I/O also needs processor time
– File system
– Network

• Don't go to sleep

17

Usage by User
• User creates signal list file specifying signals to be captured
• RSCAD script

– Reads signal list file
– Sets draft variables for GTFPGA configuration of user selected

signals
– Places a copy of the user’s signal list file in shared location for use

by the logger
• Logger generates a csv file with the recorded data, with signal

names in header (facilitates associating data with the signal
name when loaded)

• User controls starting and stopping recording of data through an
RTDS signal (e.g. can be a runtime switch)

• Config file exists on shared file server
– Sets sampling rate
– Other parameters for future use

Data File Format

• Text format (csv file)
– Human readable
– Large files are unmanageable (10GB cannot be

read by Matlab)
• Binary (Matlab)

– Difficult to incrementally append
– Much quicker loading time

19

Future

• Logging to handle concurrent RTDS racks
and chassis
– Need to update configuration mechanism
– RTDS to single PC via switch

• Online analysis and visualization
• Modular solution to use with GTNET, etc.
• Bi-directional support between simulation

and surrogate HW

Conclusions

• Commodity HW/SW
– Solution can more easily take advantage of HW upgrades
– Most computers/devices have Ethernet ports

• Programming can be cumbersome
– High-level languages (e.g., Python) can be inefficient for short

deadlines
– Limited tools and languages for targeting FPGA (e.g.,

Matlab/Simulink)
• Ethernet provides more flexibility than PCI-e

implementation
– Same/similar driver for each OS (and version)
– Latency is sufficient and high throughput of PCIe not generally

needed

QUESTIONS?

22

surrogate

IEEE 1676-2010, Guide for Control Architecture for High Power Electronics
(1 MW and Greater) Used in Electric Power Transmission and Distribution Systems,

Recommended architecture for power electronics applications (Fig. 1)

System Control
- Operating mode determination

≥10 ms

Application Control
- Overriding control & measurements

1ms - 1s

Converter Control
- PLL synchronization
- Coordinate transformations
- Current controls
-

10 us – 1 ms

Switching Control
- Modulator
- Converter switching logic
- 2nd level protection

1 – 10µs

Hardware Control
- Stack or module assembly
- Snubbers for safe commutation
- Gate drivers and feedbacks
- 1st level device protection
- A/D and D/A conversion
- Gate drive power supply
- Current and voltage sensors
- AC/DC power terminals
- Thermal management

0.1 – 1µs

Pr
ot

ec
tio

n

Simulator

Ethernet/IP Network

Controller Controller

Large-Scale CHIL

Controller

Interface Interface Interface Interface

Controller

n = 1 ………………………………..…………………….. 100

Cloud Remote Facility

Different Flavors of CHIL

Traditional

Processor(s)

I/O

Power System

D/A A/D Ethernet

Code
(E.g., Simulink,

C++, VHDL)

Abstract
Control

Algorithm(s)

Object Code

Focus: control algorithm on field
deployed target platform

Power System

Surrogate

Focus: control algorithms implementations,
distributed, networked, multi-use target
platforms, large scale

Representative host
More flexible, reuseable
Open platforms

Implementation
and evaluation

levels of interest

	General-Purpose Data Recording
	Overview
	Data Recording at CAPS
	Implementations
	Desirable Functionality of Data Recorder
	Desirable Functionality of Data Recorder (cont'd)
	Example Use Case
	Slide Number 8
	Logger Implementation
	Logger Implementation
	Software and Hardware Overview
	Fiber to Ethernet
	Communication Protocol Between FPGA and Server
	Tasks
	Meeting Deadlines
	Linux Configuration
	Meeting Deadlines
	Usage by User
	Data File Format
	Future
	Conclusions
	Questions?
	Slide Number 23
	Slide Number 24
	Different Flavors of CHIL

