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Data Recording at CAPS

• Model and Device Characterization
• Demonstration 
• Fault recording
• Contexts

– RTDS only simulation
– Co-simulation
– PHIL
– CHIL



Implementations

• RSCAD plot captures
• RSCAD script reading and recording 

runtime meters
• External recording scopes (data acquisition 

system)
• GTNET stream data to server
• Listener on another PC

Simulation



Desirable Functionality of Data 
Recorder

• Continuously record data over reasonably long time 
intervals (hours)

• Vary sampling rates (down to every time step)
– per signal
– Within single capture

• Efficiently analyze recorded data
– Loading time for post processing analysis (e.g., Matlab)
– Online analysis

• Trigger
– Manual
– Fault events
– Pretrigger
– Continuous



Desirable Functionality of Data Recorder 
(cont'd)

• Ability to interact with runtime while recording especially 
important during PHIL experiments

• Low network congestion
– Computer executing the runtime has a slow/congested network 

connection
– High data rates may cause congestion

• Vary capture rates
– Per signal
– Within single capture

• Commodity hardware and software



Example Use Case
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LOGGER IMPLEMENTATION
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Logger Implementation

• ML605 and GTFPGA
• Computer running Linux

RTDS ML605 Dell 1U 
Server

fiber Gigabit Ethernet



Software and Hardware Overview

• ML605 Xilinx FPGA development board
– GTFPGA
– Xilinx Emac coregen
– VHDL

• Dell 1U rack server
– Linux with PREEMPT_RT patches
– Python/Cython, C++
– SSH



Fiber to Ethernet

• RTDS protocol over fiber to frame-level Ethernet (1 gigabit)
– Less protocol overhead
– Not TCP/IP, so not routable but can still be switched

• ML605 - high-speed transceivers
• RTDS interface block
• Xilinx emac coregen

RTDS 
Interface

Xilinx Emac

Gigabit
Copper Ethernet

Fiber



Communication Protocol Between 
FPGA and Server

• Logger initiates communication by sending 
data to FPGA

• GTFPGA responds with a frame containing 
the values from latest time step

• Send a frame every time step and process 
the received frame (~50 microseconds)

• Vanilla implementation has large variability 
(10s of microseconds to milliseconds)



Tasks

• Ethernet communication with short deadline
• Process received frames

– Check if data should be logged
– Check for missed time steps
– Format data for storage

• Write data to disk
• Write messages to screen
• Server for user to retrieve recorded data



Meeting Deadlines

• Rewrite portions in C++
• Multiple threads of execution

– C++ thread communicating with ML605
– Python thread processing frames

• Check if data should be logged
• Send data to another thread to write to disk

– C++ thread logging messages to console



Linux Configuration

• Vanilla Linux with PREEMPT_RT patches
– Better preemptibility and thread prioritization
– More deterministic time to execute an operation (at the 

expense of lower average-case performance)
• Isolate cores and pin threads to separate cores

– Efficient cache usage
– Minimize context switches

• Disable hyperthreaded (virtual) cores



Meeting Deadlines

• Lockless communicating between threads
– Use processor instructions for synchronization 

rather than spinning or OS
– Single reader, single writer queue

• Assign kernel thread priorities
– I/O also needs processor time
– File system
– Network

• Don't go to sleep
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Usage by User
• User creates signal list file specifying signals to be captured
• RSCAD script

– Reads signal list file
– Sets draft variables for GTFPGA configuration of user selected 

signals
– Places a copy of the user’s signal list file in shared location for use 

by the logger
• Logger generates a csv file with the recorded data, with signal 

names in header (facilitates associating data with the signal 
name when loaded)

• User controls starting and stopping recording of data through an 
RTDS signal (e.g. can be a runtime switch)

• Config file exists on shared file server
– Sets sampling rate
– Other parameters for future use



Data File Format

• Text format (csv file)
– Human readable
– Large files are unmanageable (10GB cannot be 

read by Matlab)
• Binary (Matlab)

– Difficult to incrementally append
– Much quicker loading time

19



Future

• Logging to handle concurrent RTDS racks 
and chassis
– Need to update configuration mechanism
– RTDS to single PC via switch

• Online analysis and visualization
• Modular solution to use with GTNET, etc.
• Bi-directional support between simulation 

and surrogate HW



Conclusions

• Commodity HW/SW
– Solution can more easily take advantage of HW upgrades
– Most computers/devices have Ethernet ports

• Programming can be cumbersome
– High-level languages (e.g., Python) can be inefficient for short 

deadlines
– Limited tools and languages for targeting FPGA (e.g., 

Matlab/Simulink)
• Ethernet provides more flexibility than PCI-e 

implementation
– Same/similar driver for each OS (and version)
– Latency is sufficient and high throughput of PCIe not generally 

needed



QUESTIONS?
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surrogate

IEEE 1676-2010, Guide for Control Architecture for High Power Electronics 
(1 MW and Greater) Used in Electric Power Transmission and Distribution Systems,

Recommended architecture for power electronics applications (Fig. 1)

System Control
- Operating mode determination 

≥10 ms

Application Control
- Overriding control & measurements

1ms  - 1s

Converter Control
- PLL synchronization
- Coordinate transformations
- Current controls
-

10 us – 1 ms

Switching Control
- Modulator
- Converter switching logic
- 2nd level protection

1 – 10µs

Hardware Control
- Stack or module assembly
- Snubbers for safe commutation
- Gate drivers and feedbacks
- 1st level device protection
- A/D and D/A conversion
- Gate drive power supply
- Current and voltage sensors
- AC/DC power terminals
- Thermal management

0.1 – 1µs
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Simulator

Ethernet/IP Network

Controller Controller

Large-Scale CHIL

Controller

Interface Interface Interface Interface

Controller

n = 1 ………………………………..…………………….. 100

Cloud Remote Facility



Different Flavors of CHIL

Traditional

Processor(s)

I/O

Power System

D/A A/D Ethernet

Code
(E.g., Simulink,

C++, VHDL)

Abstract
Control 

Algorithm(s)

Object Code

Focus: control algorithm on field 
deployed target platform

Power System

Surrogate

Focus: control algorithms implementations, 
distributed, networked, multi-use target 
platforms, large scale

Representative host 
More flexible, reuseable
Open platforms

Implementation
and evaluation

levels of interest
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