

Powertech

The Power of Trust. The Future of Energy.

Development of an Interface for Hybrid Simulation Studies Using TSAT and RTDS

Pouya Zadehkhost, Software Technologies Group Pouya.Zadehkhost@powertechlabs.com

May 17, 2017

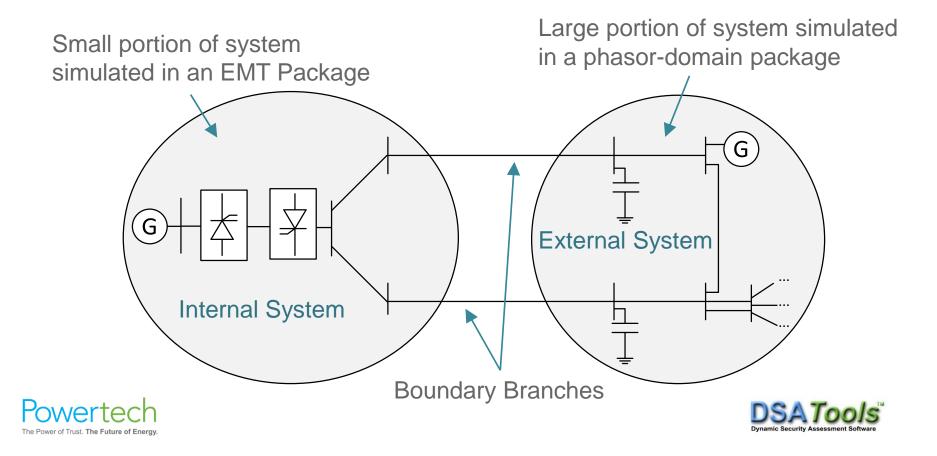
Winnipeg, Manitoba

Conventional Simulation Methods

- System dynamics are conventionally divided into low- and highfrequency transients
- Two groups of industrial-grade tools have been developed based on this categorization

Feature	Electro-Magnetic Transients	Phasor-Domain
Sample Programs	RTDS, PSCAD	TSAT, PSS/E, PSLF
Level of details	 ✓ Three-phase ✓ Components modeled in details 	 ✓ Phasor-domain ✓ Simplified dynamic models ✓ Network dynamics ignored
Size of system	 ✓ Depends on available computational hardware ✓ Varies between a few to several hundreds of buses 	 Can simulate systems with several tens of thousands of buses
Common Application	 ✓ Any type of study that needs detailed modeling 	 Bulk power system planning and operation

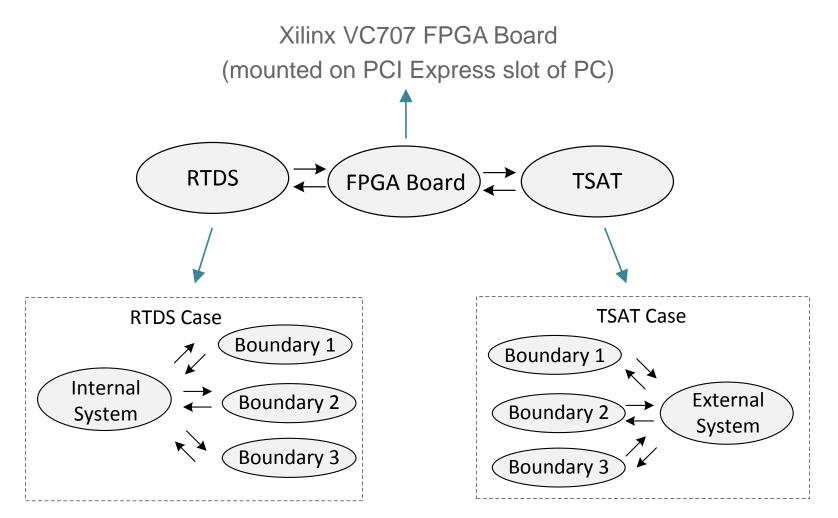
Challenges Related to Conventional Simulation Methods

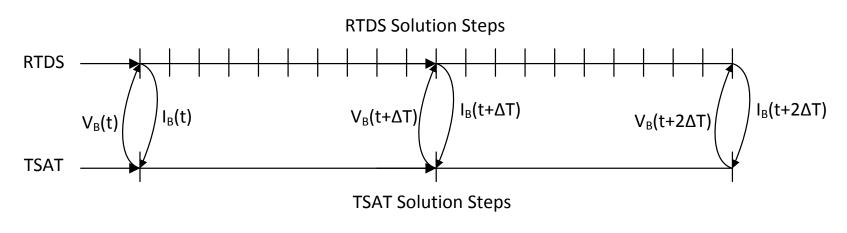

- Can focus on either detailed models in small system or simplified models in large system
 - Increasing level of details without reducing system size can be costly
- Studying interactions between system-wide events and detailed devices can be challenging, e.g.
 - Fault analysis in HVDC systems
 - Subsynchronous resonance studies
- A detailed model might be available only in an EMT package, e.g.
 - HVDC systems, renewable generators, FACTS devices, etc.

 Hybrid simulation approach addresses these challenges by using both EMT- and phasor-domain simulation methods

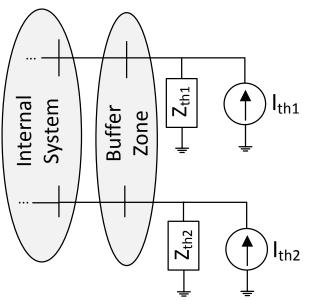
Advantages of Hybrid Simulation

- Effective in analyzing impact of low-frequency oscillations on specific components and vice-versa
- A cheaper solution for studying large systems compared to full-EMT simulation
- Takes advantage of rich modeling library available in EMT and phasor-domain simulation packages


- A tool for performing hybrid simulation studies
 - Small part of system modeled in RTDS, rest of system modeled in TSAT
 - Developed by Powertech
 - With participation of Yonsei University
 - Sponsored by KEPRI
- TRI is developed with special focus on **practical aspects** to
 - Make the tool user-friendly
 - Minimize case setup efforts
 - Simplify results analysis steps

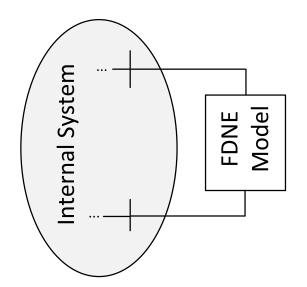


- RTDS simulates internal system at normal time-step (e.g. 50us)
- TSAT simulates external system at normal time-step (e.g. 5ms)
- Boundary injections are exchanged at the end of every TSAT integration step



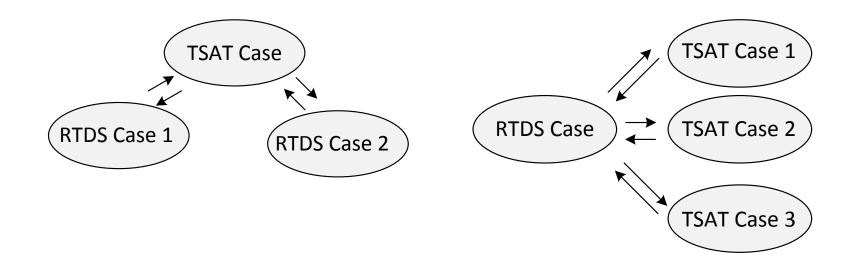
Representation of External System in EMT

- Approach 1 Norton (or Thevenin) Equivalent
 - External system is modeled as a Norton equivalent
 - ✓ Easy-to-use since TSAT automatically
 - calculates Thevenin impedance
 - updates Norton source current
 - X May fail when fault is applied at boundary
 - A buffer zone between internal and external systems is recommended

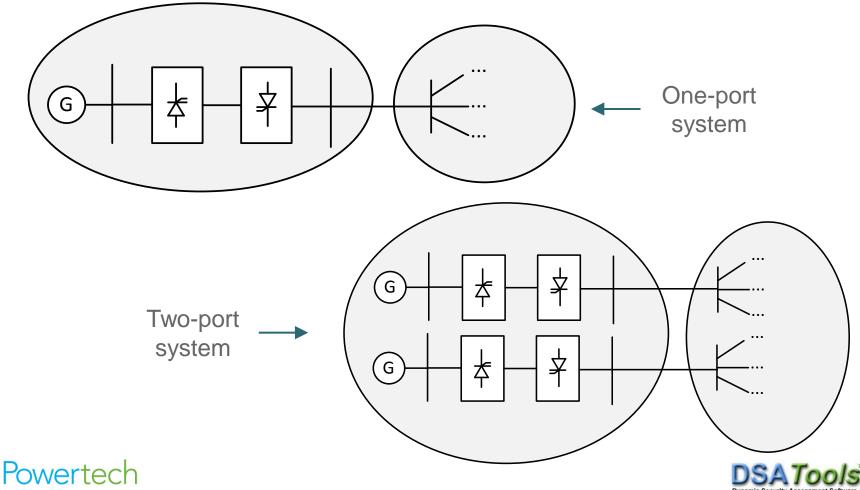


Modeling External System in Internal System

- Approach 2 Frequency Dependent Network Equivalent (FDNE)
 - External system is modeled as a frequency-dependent mathematical model
 - ✓ More accurate than Norton (Thevenin) equivalent
 - ✓ Does not need buffer zone
 - Difficult to calculate
 - **×** Sensitive to changes in external system



- Supports both Thevenin Equivalent and FDNE
- Potential TSAT-RTDS Configuration



• Supports single-port and multi-port boundaries

The Power of Trust. The Future of Energy

- Case is being setup as normal
- Handling data exchange GTFPGA and TSA-Interface are added 0 with FPGA board M1 IEEE Type ESST4B Excitation BUS #1 System Zone:1 Area:1 Owner:1 BUS1 1.0412 /_ -2.69 GTFPGA Ef lf Vpu B1 C1 A1 From GTFPGA To GTFPGA EF1 VOB1 • Variables = 11 Variables = 8 EF VMPU IF TM∨A = 100.0 M∨A GTFPGA Card # 1 22.0 345.0 Controls Proc M1 Port 2 в $\Delta \chi$ LAGS С W ΤM 杳 <<Master Port>> Φ wh Start TSA-Interface 0 TSATStart W Tm1 Input Control -0 TSATCtrl TSA Input 2 TSA Input 1 IEEE Type 1 Governor/Turbine Custom model FromTSAT2 FromTSAT1 M1 representing one ر ر ے ا ∢ . • TSAT boundary Fault Control

Dynamic Security Assessment S

L-G FAULT POINT

Power

The Power of Trust. The Future of Energy

• TSAT case is being setup as normal

	J <mark>I</mark> ™ TSAT	- [case39.tsa]							
	File Ru	n View Opti	ons Auto	Help					
	0 💕	- 🖷 🖬 🤨	î 🔁 📴	🔊 🌣 📶	R 💻	Ⅱ 1) =	i 🗃 🗶 📰 🎕	• 🖸 🔟	
	Scenario				Basecase An	nalysis		Transaction /	
	No.	ID			Security State	us		Name	
	1	Hybrid Simulation							
	2	TSAT Only							
			TSAT Scen	ario Edit Window	- Hybrid Sim	ulation Dat	a - Hybrid Simulation	[case39.pfb]	
Provi typical Provide simula	TSA s	study nybrid	- S(cenario Data Description Parameters Powerflow Data Dynamic Data Oriteria Data Criteria Data Contingency Data Dynamic Represe Transaction Data Sequence Netwo PMU Data	entation Data rk Data	- Hybrid S	Simulation Data Optional Data Boundary Definition Data File Parameters File	boundary_d	Browse Edit Create Browse Edit Create

TSAT Case Setup

 Defining boundaries between internal and external systems

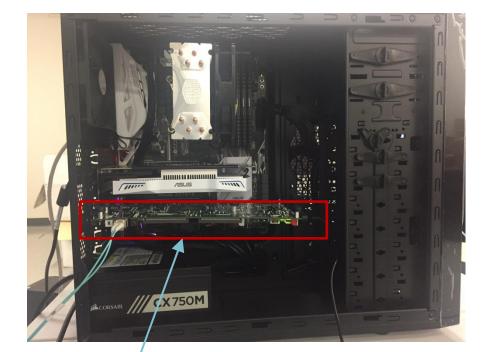
ISAT Boundary De	finition Data Edi	tor	\wedge	
Range of Ports Oc	cupied by TSAT			
First port number:	1			
Last port number:	9			
List of Boundaries:				
Boundary Name		Assigned Port Numbers		
Boundary Name 7-1		Assigned Port Numbers 2, 3		
		-		
7-1		2, 3		
7-1 3-4		2, 3 4, 5		TSAT N

RTDS quantities may optionally be monitored

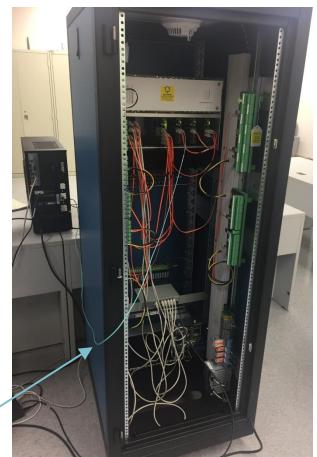
Available Branches Filters All Areas Area \sim Number All Zones \sim Zone Name From Bus # Bus Name To Bus # Bus Name BUS 1 BUS 2 230. 2 230. 1 BUS 1 230. 6 BUS 6 230. 1 2 BUS 2 230. 5 BUS 5 230. 3 BUS 3 230. 4 BUS 4 230. < - 3 **Specified Branches** Boundary Name: 3, 4, '1 ' 3, 4, '2 ' 3-4 First Port: 4

TSAT Monitor Data Editor

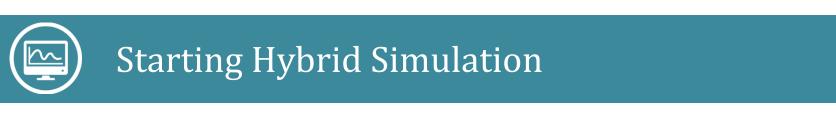
Monitor Data Editing

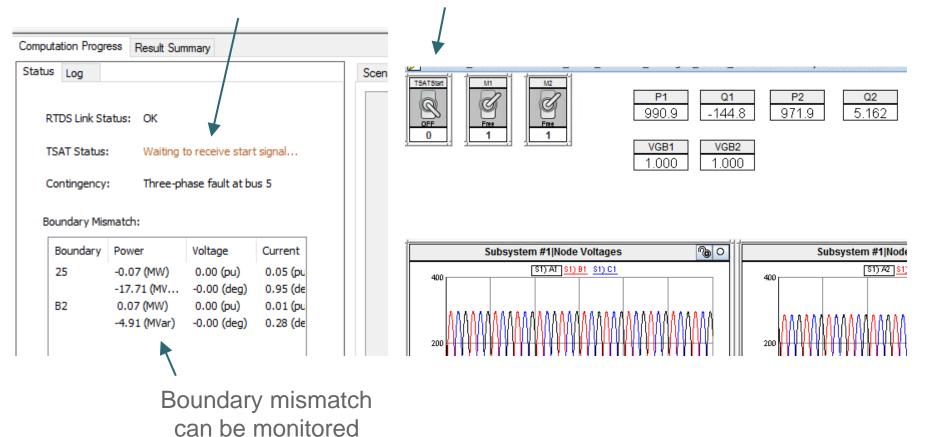

Generator State D	C Converter DC Control	Block DC Bus	Hybrid Simula	tion
ndividual RTDS Quantit	ies			
Port Number	Quantity Nam	е Туре	^	
10	P1	Float		Add
11	Q1	Float		
12	Freq1	Float		Modify
13	P2	Float		-
14	Q2	Float	¥	Remove
<			>	

Dynamic Security Assessment Software

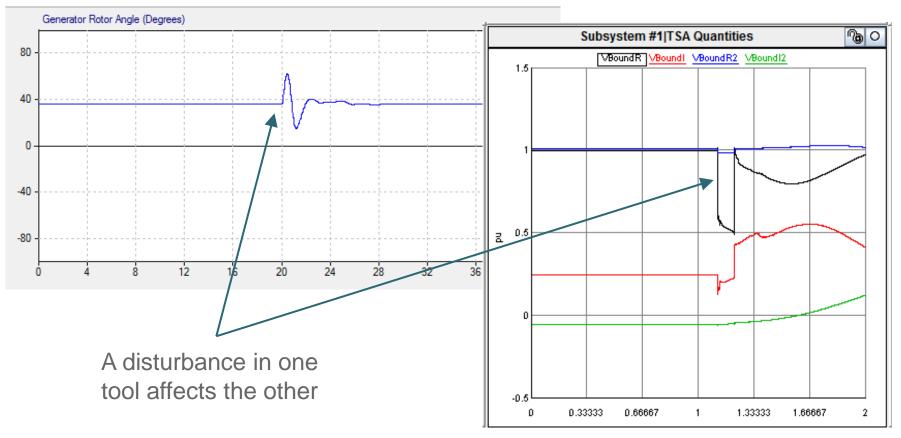


Physical System Setup

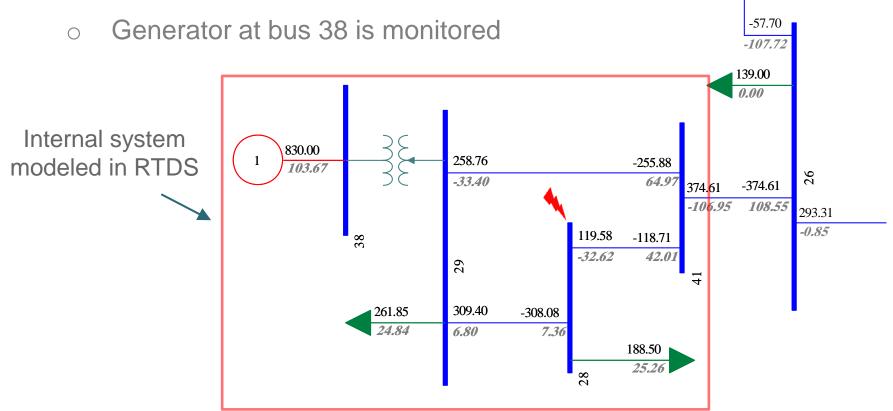

FPGA Board mounted on PCI Express slot


RTDS Rack connected to PC through an optical fiber

TSAT waits during RTDS start-up User notifies TSAT once RTDS startsup (may automate this step in future)

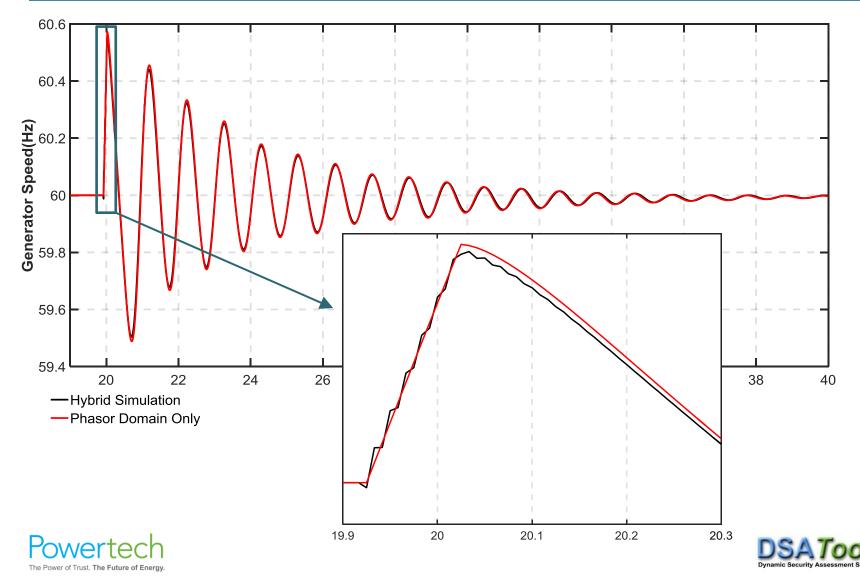


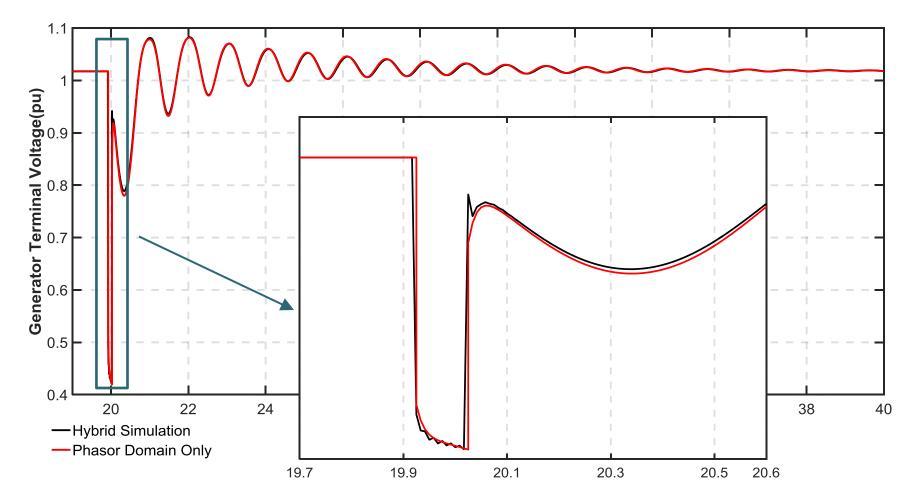
TSAT and RTDS run simultaneously



• IEEE 39-bus test system

The Power of Trust. The Future of Energy

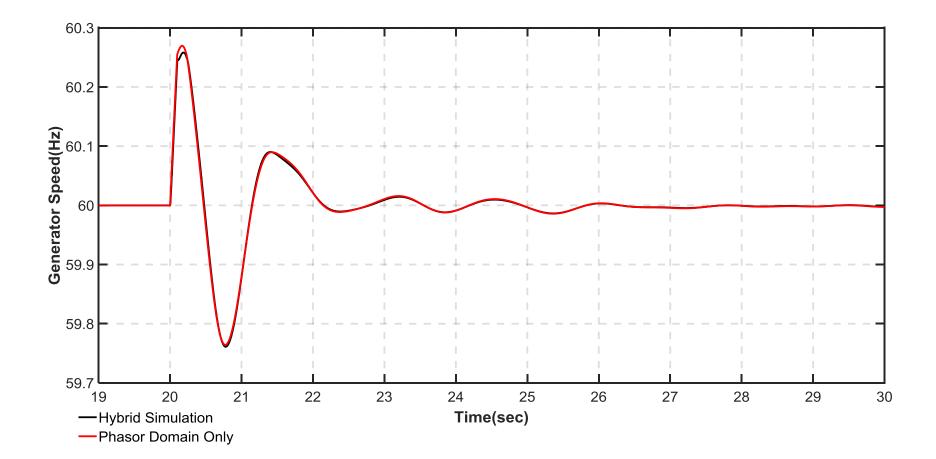

• Fault applied in internal system (bus 28)



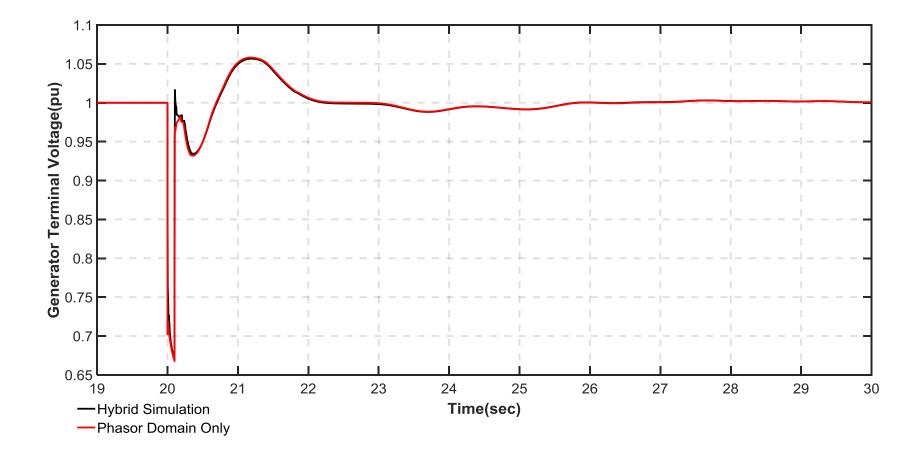
Case Study 1 – Generator Rotor Speed

Case Study 1 – Generator Terminal Voltage

Powertech The Power of Trust. The Future of Energy.


- A practical case with 2189 buses and 459 generators
 - Two generators modeled in RTDS
 - Rest of system is modeled in TSAT
- Contingency description
 - Fault is applied at TSAT-side (2 buses away from one of boundaries)
 - Cleared after 0.1 seconds
- A generator close to fault is monitored

Case Study 2 – Generator Rotor Speed



Case Study 2 – Generator Terminal Voltage

- \circ Testing
 - Powertech is currently working with Yonsei University and KEPRI on testing phase
- Commercialization
 - Powertech owns full IP and commercialization right
 - The target is to release the first commercial version of the hybrid simulation interface by end of 2017
- **Demonstration**
 - We will demo TSAT-RTDS Interface at the IEEE PES general meeting, July 2017

- Why using hybrid simulation?
 - Takes advantage of both EMT and phasor-domain simulation packages
 - Facilitates analyzing interactions between low- and high-frequency transients
- o TSAT-RTDS Interface
 - Performs hybrid simulation studies using TSAT and RTDS
 - Practical aspects have been one of main objectives
 - Preliminary testing demonstrated that the tool is promising
 - Allows monitoring interactions that may be missed in pure EMT or pure phasor-domain simulations

