

Model and System Validation with15 MVA HIL Grid Emulator at Clemson University

Johan Enslin

Ramtin Hadidi; Jesse Leonard; Curtiss Fox SCE&G Energy Innovation Center (EIC) www.clemsonenergy.com

Driving workforce development, innovation and economic development for power and energy

Zucker Family Graduate Education Center (ZFGEC) SCE&G Energy Innovation Center (EIC) Clemson University Restoration Institute (CURI)

Overview

- Clemson in Charleston: SCE&G Energy Innovation Center
- Duke Energy eGRID 20 MVA grid emulator
- Validation of Power Amplifier Units
- PV Inverter Testing and Model Validation
- BESS Testing and Model Validation
- Control Hardware-in-the-Loop Testing
- PV Synchronous Generator

- SCE&G Energy Innovation Center
 - Wind Turbine Drivetrain Test Facilities (7.5 MW & 15 MW)
 - Accelerated mechanical and electrical testing in controlled environment.
 - Duke Energy Electrical Grid Research Innovation & Development Center
 - eGRID 15 MW Dynamic grid emulation (steady-state, dynamic, and faults).
 - HiL Simulation facility with electrical / mechanical testbeds
- Power related Cyber-Physical Security labs (Planned)
- Currently 15+ Research Scientists, Engineers and Technicians
- Currently hiring 12 multi-disciplinary power-related faculty
- Planned 30 research, technical and administrative staff
- Planned 200 students as working professionals and full-time

7.5 MW and 15 MW Test Benches

7.5 MW Test Bench Performance Specifications

Tost Power	7 500 kW
Test Fower	7,500 KVV
Maximum Torque	6,500 kNm
Maximum Speed	20 rpm
Inclination	4 ° to 6 °
Static Axial Force	± 2,000 kN
Static Radial Force	± 2,000 kN
Static Bending Moment	± 10,000 kNm

15 MW Test Bench Performance Specifications

Test Power	15,000 kW
Maximum Torque	16,000 kNm
Maximum Speed	17 rpm
Inclination	6 °
Static Axial Force	± 4,000 kN
Static Radial Force	± 8,000 kN
Static Bending Moment	± 50,000 kNm

15 MW Power HiL Facility

Virtual Test Bench Test Capability

15 MW HIL Grid Simulator Performance Specifications

Test Power	15 MVA
Frequency range	4565 Hz to 400 Hz
Sequence capability	3 and 4 wire
High Voltage Ride Through HVRT	100145%
Low Voltage Ride Through LVRT	1000%
Unsymmetrical LVRT	yes
Power quality PQ evaluation	yes

Virtual Test Bench Simulator Performance Specifications

Virtual testing and validation	yes
Multi-domain modeling	yes
Test protocol verification and optimization	yes
Flexible model configuration	yes
Uncertainty in analyses	reduced
Operator training	yes
Students involvement	high

SCE&G Energy Innovation Center

SCE&G EIC Electrical Single Line

PHIL Configuration

Power Amplifier Units

PAU-4

PAU-4

Open Circuit Harmonic Generation

PAU Model Validation

• The test is designed to validate a full PAU model.

• Single PAU output voltage validation to the rated voltage of 4160V.

Reconfigurable PAU Filter

120uH

11.7uF

0.5Ω

(Phase A components shown)

- Wye filter
- (3)Single-phase step-up transformers 4160/23.9 kV

2.2 MW Solar Inverter Testing

- 1000 V class, 2+ MW
- 385V delta w/ MVT to 4160 test bus
- UL 1741/IEEE 1547 @ 60Hz
- IEC 62116 @ 50 Hz
- Frequency ride-through
- Voltage ride-through

L-N: 2000 kW, 0.55 Vpu, 67 ms

Battery Energy Storage System Testing

BESS Efficiency Curves

SOC Modeling and Validation

Distribution Automation CHIL Lab

- Baseline an IEC 61850 enabled substation
- SEL relays interface with RTDS
- RTDS simulate grid-tie inverters in real-time in a Controller-Hardware-Inthe-Loop (CHIL) configuration

Controller Testing HIL (CHIL)

Leonard, J., Hadidi, R., Fox, C., "Real-Time Modeling of Multi-level Megawatt Class Power Converters for Hardware-In-the-Loop Testing," in Proc. International symposium on Smart Electric Distribution Systems and Technologies, Vienna, Austria, 2015.

Photovoltaic Synchronous Generator

- Development a 40 kW hybrid energy storage system (HESS) that works in parallel with commercial PV inverters.
- Demonstrate virtual inertia, primary and secondary frequency response.

Thank You. Questions?

Contact: Dr. Johan Enslin Executive Director and Duke Energy Smart Grid Endowed Chair jenslin@clemson.edu; 843-730-5117

www.clemsonenergy.com