

PMU-based solution for the economic dispatch problem using the Real Time Digital Simulator

RTDS User Conference

Dr. S. Krishnamurthy CSAEMS, Cape Peninsula University of Technology 25th JAN 2016, Johannesburg, South Africa

Content

- Background
- Introduction
- Implementation of a lab scale data acquisition system using the RSCAD GTNET card Phasor Measurement Units (PMUs)
- □ Formulation of the dispatch problem
- □ Algorithm for solution of the dispatch problem
- Power system model, simulation and assignment of the load demand powers to the GTNET card PMU and simulation results
- PMU signal monitoring in the RSCAD and MySQL environment for the initial loading condition
- Comparison of the economic dispatch problem solutions using the signals taken from the RTDS GTNET card PMU and the front panel analog output RTDS PB5 card signals.
- Teaching power system Protection course at University (CPUT) level using RTDS
- Conclusion
- Acknowledgements and References

Background

- ❑ At present the Energy Management System (EMS) operation is performed by existing SCADA systems which supervise, control and manage the generation, transmission and distribution systems.
- □ The current SCADA system does not allow for the fast data acquisition and processing of information for the implementation of real-time control in the power system.
- □ This situation is due to the fact that the SCADA system is designed and implemented using the principles of the older technology for measurement, communication and control as follows:
 - ➤ The 3-phase current and voltage signals from the CTs (Current Transformers) and PTs (Power Transformers) are sampled and sent to the energy management system and is represented by their magnitude, active and reactive power only.
 - The measurement window is large, which produces data that is not as accurate with the system changes. The assumption is that during the measurement window period the power system parameters will change and that the system will remain constant.

Background ...

- □ The SCADA system does not allow measurement of the power system voltage and current phase angles and does not consider synchronized wide area measurement.
- Analysis of the system status is based on a multiple power flow approach, which creates a computational burden that is not fast enough for real-time implementation.
- □ The existing situation is that critical data is required to monitor the system during transients and disturbances which require fast synchronized data in order to capture the system dynamics.
- Based on this data a real-time situational awareness is created and makes it possible to implement fast real-time control.
- Online monitoring of the currently large interconnected power system is important to visualize the network in real-time, which has become possible with the advent of the synchrophasor technology.

Introduction

- □ The electric power utilities play a vital role in the generation, transmission and distribution of the electrical power to the end users.
- □ The power utilities generally face two major issues
 - i. Power systems are expected to operate close to the maximum capacity
 - ii. There is a need for accurate monitoring and control of the power system network using the modern technological advances together with their associated configuration tools.
- These two issues are interconnected as better monitoring allows for better control of the power system.
- The development of the new standard-based power system technologies contribute to concept of building of a smarter grid.
- □ The challenge is that this process requires the development of new control and operation architectures and methods for data acquisition, data transfer, and control computation.

Introduction ...

- □ These methods require data for the dynamic state of the entire power system in real-time, which allows for the introduction of synchrophasor-based monitoring and control of the power system.
- □ This paper describes the research work for integration of the newer existing power system technologies to build fully automated systems for the real-time solution of the power system energy management problem.
- Data measurement and acquisition, data transfer and distribution through a communication network, and data storage and retrieval is incorporated in one complete system.
- The paper further details the developed methods, algorithms, procedures, software and hardware tools for implementation of a lab-scale prototype of the power system
- □ The acquisition and transfer of the data to the control center in order to allow for the solution of the optimal power dispatch problem in real-time using real-time data is performed.

Implementation of a lab scale data acquisition system using the RSCAD GTNET card Phasor Measurement Units (PMUs)

Implementation of a lab scale data acquisition system using the RSCAD GTNET card Phasor Measurement Units (PMUs)

Lab-scale data acquisition system cont...

- The RTDS generates the voltages and currents within the RSCAD software environment.
- These signals are then fed to the software-based PMUs (GTNET-PMUs). The measured data from the GTNET-PMU is transferred to the virtual Phasor Data Concentrator (PDC) – OpenPDC software, using the Ethernet communication protocol.
- ❑ The GTNET card PMU used is configured within the RSCAD software environment and is synchronized to the Global Positioning System (GPS) using a SEL-2407 satellite clock with an antenna.
- □ At the remote end, the OpenPDC software is used to capture the RTDS signals in real-time.
- These signals are archived in the MySQL database. Every five minutes, the data is retrieved from the MySQL database by the MATLAB optimisation algorithm.
- ❑ The Lagrange's algorithm developed by (Krishnamurthy and Tzoneva, 2013) is used to solve the Economic Dispatch (ED) problem using the real-time data which is retrieved from the MySQL database.

Economic Dispatch

What is economic dispatch?

• The operation of generation facilities to produce energy at the lowest cost to reliably serve consumers and recognizing any operational limits of generation

Frequency of the dispatch

Performing an economic dispatch solution more frequently (e.g., 5 or 15 minutes rather than each hour) affects the level of costs

Communication of information

- Generation operators, transmission owners, and load serving entities must provide accurate and current information for planning and dispatch functions
- Inadequate or incomplete communications affects the level of costs of the economic dispatch.

Software tools for dispatch and information

- Reliable and secure computer software is essential for rapidly responding to system changes.
- To maintain power system reliability and selecting the lowest cost generators to dispatch.

Real-time solution of the dispatch problem using the GTNET card PMU-based data acquisition and transfer system

Optimisation

Define Optimisation

Optimization is a mathematical discipline that concerns finding either a minimum or maximum of functions, subject to the constraints.

Classical method

A mathematical approach used to find the unknown vectors through the derivative of the objective function with respect to the constraints.

Formulation of the economic dispatch problem

The objective is to minimize the CEED fuel cost equation subject to the constraints and is expressed as,

$$F_{T} = \sum_{i=1}^{n} \left[(a_{i}P_{i}^{2} + b_{i}P_{i} + c_{i}) + h_{i} (d_{i}P_{i}^{2} + e_{i}P_{i} + f_{i}) \right]$$
 [\$/hr] (1)

Under the constraints

1) Power balance constraint $\sum_{i=1}^{n} P_{i} = P_{g} = P_{p} + P_{L}[MW]$ 2) Generator operational constraints $P_{i,\min} \leq P_{i} \leq P_{i,\max}, i = \overline{1, n} [MW]$

Fig: Single line diagram of the five bus power system model

 Number of generators are 3

(2)

- Number of Transmission lines are 7
- (3) Number of Loads are 4

Combined Economic Emission Dispatch (CEED) Problem using Lagrange's algorithm

Function of Lagrange is formulated by introduction of the Lagrange's multiplier λ , as follows:

$$L = \left[\sum_{i=1}^{n} \left[(a_{i}P_{i}^{2} + b_{i}P_{i} + c_{i}) + h_{i} (d_{i}P_{i}^{2} + e_{i}P_{i} + f_{i}) \right] + \lambda \left(P_{D} + \sum_{i=1}^{n} \sum_{j=1}^{n} P_{i}B_{ij}P_{j} + \sum_{i=1}^{n} B_{0i}P_{i} + B_{00} - \sum_{i=1}^{n} P_{i} \right) \right]$$
(4)

Necessary conditions for optimality for solution of the problem (4)

i.e. According to
$$P_i$$
, $\frac{\partial L}{\partial P_i} = 0, i = \overline{1, n}$ (5)

Derivation of the condition (5) is as follows:

$$\frac{\partial L}{\partial P_{i}} = 2a_{i}P_{i} + b_{i} + h_{i}\left(2d_{i}P_{i} + e_{i}\right) + \lambda\left(2\sum_{j=1}^{n}B_{ij}P_{j} + B_{oi} - 1\right) = 0, i = \overline{1, n}$$

$$P = E \setminus D$$
(6)
(7)

Where

$$E = \begin{bmatrix} \frac{a_{1} + h_{1}d_{1}}{\lambda} + B_{11} & B_{12} & B_{1n} \\ B_{21} & \frac{a_{2} + h_{2}d_{2}}{\lambda} + B_{22} & B_{2n} \\ B_{n1} & B_{n2} & \frac{a_{1n} + h_{n}d_{n}}{\lambda} + B_{nn} \end{bmatrix}, \quad D = \frac{1}{2} \begin{bmatrix} 1 - \left(\frac{b_{1} + h_{1}e_{1}}{\lambda}\right) - B_{01} \\ 1 - \left(\frac{b_{1} + h_{1}e_{1}}{\lambda}\right) - B_{02} \\ 1 - \left(\frac{b_{1} + h_{1}e_{1}}{\lambda}\right) - B_{0n} \end{bmatrix}, \quad P = \begin{bmatrix} P_{1} & P_{2} & P_{3} & \cdots & P_{n} \end{bmatrix}^{T}$$
(8)

Lagrange's method for CEED Problem

The condition for optimality, $\frac{\partial L}{\partial \lambda} = 0$ $\frac{\partial L}{\partial \lambda} = \left(P_{p} + \sum_{i=1}^{n} \sum_{j=1}^{n} P_{i} B_{ij} P_{j} + \sum_{i=1}^{n} B_{0i} P_{i} + B_{0i} - \sum_{i=1}^{n} P_{i} = 0 = \Delta \lambda\right)$ (9) The gradient procedure for calculation of λ has to be developed as follows: $\lambda^{(k+1)} = \lambda^{k} + \alpha \Delta \lambda^{(k)}, \lambda \neq 0$ (10) The condition for end of the iterations is $\Delta \lambda^{(k)} \leq \varepsilon_{i}$ or k = m (11)

Flow chart of Lagrange's algorithm for CEED problem

Five-bus power system network modelled in the RSCAD environment with additional components to implement data acquisition and data transfer using the GTNET card PMU signals

RSCAD GTNET voltage and current phasor signals together with their respective time stamps being monitored in the OpenPDC environment

oenPDC N	Manager							<u> </u>		
	nanager		Home	Monitoring	Devices	Adapters	Manage	Help	Node:	Default
	Real	-Time Measu	rements				Re	fresh Inte	rval: 10 sec	
DIRECT CONNECTED	Devices Connected Di	irectly								
PMU1	Pmu1		IEEE C37.118	-2005						
47e9153f-8505-4fcd-	-a3c7-7e5c441c24e0	47	AEP_PMU1:DF	DFDT		10-29-2014 (01:17:16.820		0	
d7c11b93-ca59-4eaf	-a52b-79b3af0585bf	46	AEP_PMU1:F	FREQ		10-29-2014 ()1:17:16.820		50	Hz
4199ac51-f55f-4347-	92bc-b109f0e85cd5	50	AEP_PMU1-PA1:VH	VPHA		10-29-2014 ()1:17:16.820		-92.6	Degree
8a465c03-f0dd-4ab9	-b244-398fb8a760a0	52	AEP_PMU1-PA2:VH	VPHA		10-29-2014 ()1:17:16.820		147.4	Degree
61026a2c-9ac6-42fe	-ac0e-4240bd9275f9	54	AEP_PMU1-PA3:VH	VPHA		10-29-2014 ()1:17:16.820		17.4	Degree
b7f2342d-7990-4292	-bde6-79ebc7c150b4	56	AEP_PMU1-PA4:IH	IPHA		10-29-2014 (01:17:16.820		-120.06	4 Degree
a90932f9-085f-4cd7-	aedd-0575fba73b3f	58	AEP_PMU1-PA5:IH	IPHA		10-29-2014 ()1:17:16.820		119.93	6 Degree
11b15f5a-20a2-4201	-99af-98b4a0368bf1	60	AEP_PMU1-PA6:IH	IPHA		10-29-2014 ()1:17:16.820		-0.064	Degree
c962a06a-71b6-4d6c	l-b1af-88906c5a8e98	49	AEP_PMU1-PM1:V	VPHM		10-29-2014 ()1:17:16.820		142204.6	88 Volts
00c9b998-1bbe-49d9	-abcc-4a29ca864124	51	AEP_PMU1-PM2:V	VPHM		10-29-2014 ()1:17:16.820		142204.6	88 Volts
c31964c3-218a-4d46	-87bb-0e0b2a655919	53	AEP_PMU1-PM3:V	VPHM		10-29-2014 ()1:17:16.820		142204.6	88 Volts
dc398391-2522-4a73	8-ab76-e5879361e516	55	AEP_PMU1-PM4:I	IPHM		10-29-2014 ()1:17:16.820		52.416	Amps
3238dc37-bee1-44d8	3-b3c2-9a4e18fcafa7	57	AEP_PMU1-PM5:I	IPHM		10-29-2014 (01:17:16.820		52.416	Amps
0c88d473-ca83-4bb6	-98e8-9f8005c4178b	59	AEP_PMU1-PM6:I	IPHM		10-29-2014 ()1:17:16.820		52.416	Amps
d4c9d5c1-69f3-4252	-a288-970008ac1f7b	48	AEP_PMU1:S	FLAG		10-29-2014 ()1:17:16.820		0	
- PMU2	Pmu2		IEEE C37.118	-2005						
ff11a8a2-f4e0-4739-	8f5f-6432ebb2271c	82	AEP_PMU2:DF	DFDT		10-29-2014 (01:17:16.800		0	
f35ccfb1-218b-49e8-	ba9e-6712dcdf8da0	81	AEP_PMU2:F	FREQ		10-29-2014 (01:17:16.800		50	Hz
1373328a-9101-44a	3-9f21-e1324b155ca7	85	AEP_PMU2-PA1:VH	VPHA		10-29-2014 ()1:17:16.800		-93.95	Degree
e3f6a4a5-b5f1-4c97-	9597-c475a6b14d44	87	AEP_PMU2-PA2:VH	VPHA		10-29-2014 (01:17:16.800		146.05	Degree
378cc193-23f9-4fe6-	a293-b347495fa2a9	89	AEP_PMU2-PA3:VH	VPHA		10-29-2014 ()1:17:16.800		26.05	Degree
3f0d1d73-c5a9-4039	-b268-375f1f6cd729	91	AEP_PMU2-PA4:IH	IPHA		10-29-2014 ()1:17:16.800		-113.28	3 Degree
f4c9dea7-51af-46e8-	8eb2-9866d8800599	93	AEP_PMU2-PA5:IH	IPHA		10-29-2014 (01:17:16.800		126.71	7 Degree
d574937c-9f9b-4244	-8754-c35ebd04c2fd	95	AEP_PMU2-PA6:IH	IPHA		10-29-2014 (01:17:16.800		6.717	Degree
b497c4d1-352e-4125	5-a196-41c7a66a05bf	84	AEP_PMU2-PM1:V	VPHM		10-29-2014 (01:17:16.800		141896.2	66 Volts
aec009ac-152b-4f70-	-8936-c67a6bbf1deb	86	AEP_PMU2-PM2:V	VPHM		10-29-2014 (01:17:16.800		141896.2	66 Volts
f3bf9e95-ef08-42d6-	9176-739ceee09cde	88	AEP_PMU2-PM3:V	VPHM		10-29-2014 (01:17:16.800		141896.2	066 Volts
416782fb-f5ba-4681-	-84a2-70eb7c15d867	90	AEP_PMU2-PM4:I	IPHM		10-29-2014 ()1:17:16.800		111.43	7 Amps
7c9d664a-e2fc-446a-	-8ede-4609daf8ab70	92	AEP_PMU2-PM5:I	IPHM		10-29-2014 (01:17:16.800		111.43	7 Amps
5b28d0dd-38c2-41d2	2-8fb5-7c7433a19cd5	94	AEP_PMU2-PM6:I	IPHM		10-29-2014 (01:17:16.800		111.43	
45163697-b10a-4cb7	7-8308-c6e6b3f7cc33	83	AEP PMU2:S	FLAG		10-29-2014 (01:17:16.800		0	

PMU signal monitored in the RSCAD and MySQL environment for the initial loading condition

$$P_{D} = \sum_{i=1}^{m} V_{ia} I_{ia} \cos(\Phi_{ia1} - \Phi_{ia2}) + V_{ib} I_{ib} \cos(\Phi_{ib1} - \Phi_{ib2}) + V_{ic} I_{ic} \cos(\Phi_{ic1} - \Phi_{ic2})$$
(12)

Where

P_D - Total power demand in Watts

 V_{ia} , V_{ib} , V_{ic} - Bus voltage magnitudes in volt for the ith load, i = $\overline{1,m}$

 I_{ia} , I_{ib} , I_{ic} - Branch currents in Amps for the ith load, $i = \overline{1, m}$

 ϕ_{ia1}, ϕ_{ia2} - Phase angle between the voltage and current in phase A for the ith load

 ϕ_{ib1}, ϕ_{ib2} - Phase angle between the voltage and current in phase B for the ith load

 ϕ_{icl}, ϕ_{ic2} - Phase angle between the voltage and current in phase C for the ith load

PMU volt current si	•	V _a	$\delta_{ m va}$	V _b	$\delta_{ m vb}$	V _c	$\delta_{ m vc}$	l _a	$\delta_{ ext{Ia}}$	l _b	$\delta_{ ext{ iny Ib}}$	I _c	$\delta_{ ext{Ic}}$	P _D
PMU #1	RSCAD environment	142200	- 92.6	142200	147.4	142200	17.4	52.4	-120.1	52.4	119.9	52.4	- 0.06	20.0
(P _{D1})	MySQL environment	142200	- 92.6	142200	147.4	142200	17.4	52.4	-120.1	52.4	119.9	52.4	- 0.06	20.0
PMU #2	RSCAD environment	141900	- 93.9	141900	146.0	141900	26.5	111.4	-113.0	111.4	126.7	111.4	6.7	45.0
(P _{D2})	MySQL environment	141900	- 93.9	141900	146.0	141900	26.5	111.4	-113.0	111.4	126.7	111.4	6.7	44.7
PMU #3	RSCAD environment	141100	- 94.3	141100	145.6	141100	25.6	95.2	-102.4	95.2	137.6	95.2	17.6	40.0
(P _{D3})	MySQL environment	141100	- 94.3	141100	145.6	141100	25.6	95.2	-102.4	95.2	137.6	95.2	17.6	39.7
PMU #4	RSCAD environment	138600	- 95.5	138600	144.5	138600	24.4	146.3	-105.9	146.3	134.1	146.3	14.2	60.0
(P _{D4})	MySQL environment	138600	- 95.5	138600	144.5	138600	24.4	146.3	-105.9	146.3	134.1	146.3	14.2	59.7

Comparison of the measured load power demands in the RSCAD with the power demands calculated using the GTNET card PMU signals and OpenPDC software

PMU #1 (F	PMU #1 (P _{D1}) MW		P _{D2}) MW	PMU #3 (F	P _{D3}) MW	PMU #4 (P _{D4}) MW		
RSCAD	PMU 1	RSCAD	PMU 2	RSCAD	PMU 3	RSCAD	PMU 4	
20	19.84	45	44.76	40	39.91	60	59.84	
25	24.84	45	44.76	40	39.91	60	59.84	
25	24.84	50	49.76	40	39.91	60	59.84	
25	24.84	50	49.76	45	44.91	60	59.84	
25	24.84	50	49.76	45	44.91	65	64.84	

Economic dispatch problem solution using the GTNET card PMU signals

			Generator real	powers in MW				Lagrange	's algorithm					
PD		P₁		D ₂		P ₃	P _L in	Number of	Computation	Fuel cost i	n Rs/hr			
in MW	MATLAB (Optimal)	RSCAD (Simulation)	MATLAB (Optimal)	RSCAD (Simulation)	MATLAB (Optimal)	RSCAD (Simulation)	мw	iterations (optimal)	time in sec (Optimal)	MATLAB (Lagrange's)	RSCAD (Newton Raphson)			
165	55.40	46.11	55.89	68.79	59.96	52.23	6.79	520	1.029	695.5	703.5			
170	56.90	51.19	57.76	69.98	61.97	52.09	7.18	523	1.022	709.7	723.35			
175	58.40	56.35	59.35	68.79	63.98	52.23	7.57	525	1.107	723.6	737.27			
180	59.89	61.53	61.54	68.94	66.00	52.26	7.98	527	1.19	737.8	751.35			
185	61.37	66.89	63.44	68.89	68.03	52.20	8.39	529	1.63	752.2	765.58			

Comparison of the economic dispatch problem solutions using the signals taken from the RTDS GTNET card PMU and the front panel analog output RTDS PB5 card signals

	Synchrophasor Technology using GTNET card PMU signals						RTDS PB5 card front panel analog output signals							
P _D in	P∟	Lagrang	ge's method	Fuel cost in Rs/hr MATLAB		PD	P_{L}	Number	Computation time in sec	Fuel cost	t in Rs/hr			
MW	in	Number	Computation			in	in	of		MATLAB				
	MW	of iterations	time in sec	R	RSCAD	MW	MW	iterations			RSCAD			
165	6.79	520	1.029	695.5	709.23	165	4.80	701	1.27	695.7	709.60			
170	7.18	523	1.022	709.7	723.35	170	5.10	703	1.25	709.60	723.40			
175	7.57	525	1.107	723.6	737.27	175	5.40	705	1.34	722.40	737.28			
180	7.98	527	1.19	737.8	751.35	180	5.71	706	1.41	735.70	751.42			
185	8.39	529	1.63	752.2	765.58	185	6.03	708	1.26	749.50	765.65			

- □ The highlighted boxes indicate the comparison for the Fuel cost in Rupees per hour, where firstly the calculation is performed in MATLAB with the signal taken from the GTNET card PMU output (blue box)
- □ Secondly the calculation in MATLAB is performed with the output taken from the front panel analog output PB5 processor card (red box).
- □ It is observed that the values for the fuel cost are very similar although the physical signals are taken from two different outputs from within the RTDS simulation model.

Teaching power system Protection course at University (CPUT) level using RTDS

- 1. Power system modeling and simulation using RTDS
- 2. To implement and analyse the fault analysis of the five bus power system network using RTDS
- 3. Implementation of the Distance Protection scheme using RTDS

Conclusion

- □ The GTNET card PMU supports the IEEE C37.118-2005 standard which allows for the transfer of the large, complex power system network data from the local to the remote end in real-time.
- □ The data transfer capability of the synchrophasor technology using the RTDS GTNET card PMU is very fast and accurate.
- □ The loss of data during the process of communication and signal transformation is very small.
- □ The comparison of the economic dispatch problem solution at both the local and remote end is done.
- □ It has been proven that the economic dispatch solution using the Lagrange's method provides accurate values for real power that is to be produced by the generators, and the fuel costs are reduced using the outputs from the GTNET PMU.
- The developed data acquisition, data transfer, data retrieval and data storage system algorithms and software programs can be expanded for use in the power grid energy management system for the economic dispatch solution in regional or national control centers, smart grid applications, educational courses and postgraduate research at universities.

Acknowledgements and References

Acknowledgements

- The authors gratefully acknowledge the authorities of the Cape Peninsula University of Technology, South Africa for the facilities offered to carry out this work.
- □ National research foundation (NRF) THRIP grant TP2011061100004 "CSAEMS development and growth"
- ESKOM TESP project GOOSE and Sampled Value Message structure
- ESKOM TESP project investigation for IEC 61850 Standard-based implementation and development of a method for real-time solution of the problem for optimal placement of capacitor banks in distribution networks.

References

- 1. IEEE Guide for Monitoring, Information Exchange, and Control of Distributed Resources Interconnected with Electric Power Systems.
- 2. IEEE Standard for Synchrophasor Data Transfer for Power Systems.
- 3. MATLAB Programming Fundamentals MathWorks India.
- 4. PMU Connection Tester. CodePlex.
- 5. RTDS Technologies Inc. | Real Time Digital Power System.
- 6. SEL-2407 Satellite-Synchronized Clock.
- 7. The Open Source Phasor Data Concentrator. CodePlex.
- 8. Giri, J. Enhanced power grid operations with a wide-area synchrophasor measurement & communication network. 2012 IEEE Power and Energy Society General Meeting.
- 9. Ken, M., Brunello, G., Adamiak, M., and Antonova, G. 2013. IEEE Synchrophasor Standard for Communications. PAC World magazine.
- 10. Kezunovic, M., Heydt, G., Demarco, C. & Mount, T. Is teamwork the smart solution? IEEE Power and Energy Magazine.
- 11. Kothari, D. and Dhilon, J. 2011. Power System Optimisation. Second Edition. PHI Learning Pvt. Ltd, India.
- 12. Krishnamurthy, S. 2013. Development of decomposition methods for solution of a multiarea power dispatch optimisation problem. DTech Thesis: CPUT.
- 13. Phadke, A.G. & Thorp, J.S. 2008. Synchronized phasor measurements and their applications. New York: Springer.

