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Power System Operations
 Provide reliable supply of electricity
 Efficient and secure operation

 Current trend
 Large/complex interconnections
 Loads continue to increase
 Long distance between gens. & loads
 Lack of new power stations

 Implications
 Power systems are stressed
 Systems are operating closer to their stability limit
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Figure 1: Power system stability (Kundur, 1994)
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 Power System Stability



Voltage Stability Assessment (VSA)
Ability to maintain acceptable voltage profile during
steady state conditions & after a disturbance

Causes of voltage instability:
 Small disturbances: Gradual increase in system loading
 Large disturbances: Loss of lines/generators, faults,

transformer and generator controls (OLTCs/OXLs)
 Lack of reactive power support
 Loss of voltage control

Analysis:
 The proximity of the system to voltage collapse
Mechanism of voltage collapse (how?, why?, what,

where the voltage weak areas are? effectives RAS.
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System Integrity Protection Schemes for VSA
(RAS, SPS, SIPS)

Functions
Monitor
 Detect abnormal system conditions
 Initiate remedial action(s)
 Preserve system integrity

SIPS Elements
 System monitoring element
 System protection element
 Execution element

BACKGROUND



System Integrity Protection Schemes for VSA
(RAS, SPS, SIPS)

Table 1: Remedial actions for power system instability

BACKGROUND

SIPS/RAS/SPS Transient 
instability

Small-signal  
instability

Frequency 
instability

Voltage 
instability

Generation rejection × × × ×
Remote load shedding × ×
HVDC controls × × ×
Braking resistor × ×
Under-frequency load 
shedding

×

Turbine fast valving × × ×
Automatic shunt switching × × ×
Under-voltage load 
shedding

×

Tap-changer blocking × ×
AGC controls × ×
Gas turbine start-up × ×
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Proposed algorithms and methods for WAMPAC
OBJECTIVES

Control centre applications for:
Visualization
Wide Area Monitoring  System 
System Integrity Protection Schemes 

Figure 2: Proposed methods and algorithms for Wide Area Monitoring,
Protection, and Control (WAMPAC) © 2016 Adewole, Adeyemi Charles All Rights Reserved

Measurements: IEEE C37.118 PMUs
Control : IEC 61850 GOOSE



What are synchrophasors?

Features
 1μs synchronization to the GPS,
 Reporting rates up to 200 fps for 50 Hz systems
 Accuracy of 1% TVE
 Compliance with IEEE C37.118 Std.

OBJECTIVES

Voltage phasors
Current phasors

Sequence components
Frequency

ROCOF
Analogue measurements

Digital statuses



OBJECTIVES

Applications of synchrophasors
 Situational awareness
Wide area monitoring systems
 Linear state estimation,
 Decision support
 Real-time analysis
 Protection and control
Model validation



Table 2: Comparison with existing technology

OBJECTIVES

Existing Technology Emerging Technology

SCADA Data Phasor Measurement -PMU

Refresh rate = 2-10 seconds Refresh rate = 200 samples per second 
(50 Hz)

Magnitude only Magnitude & phase angle

Measurements are not time 
synchronized Measurements are time synchronized

Legacy communication technology Modern communication technology

Not suitable for rapidly changing system 
conditions Suitable for capturing dynamic changes

X-ray MRI
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 Derivations of real-time voltage stability indices
 Generator reactive power reserve

 Derivation for centralized SIPS (undervoltage load shedding
scheme)
MVAR mismatch, Voltage Control Areas (VCA), volt deviation

 Development of a ‘proof-of-concept’ testbed

 Modelling of the test system
 New England 39-bus test system

 Real-time hardware-in-the-loop simulations of case studies
 Case studies: Load increase, generator contingencies, line

contingencies

METHODOLOGY



Proposed Real-Time Voltage Stability Indices (RVSA) indices
 Derivation from generator maximum reactive power reserve

 Generator field current derivation from

 Generator stator current derivation

METHODOLOGY
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Proposed RVSA indices for large interconnected power system
 Reactive power reserve on system generators

 Field current reserves on system generators

 Stator current reserves on system generators

METHODOLOGY
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Derivations for undervoltage load shedding scheme
 Total reactive power mismatch

 Total load to shed

 Total load to shed per VCA

METHODOLOGY

(7)

(8)

...,2,1,0,,1,0 ==−=∆ kNiQQQ ggigikgik

...,2,1,0,
1

, =⋅= ∑∆
=

kQQ
gN

i
gikKkshed β

...,2,1,0,,1

100

100
,

1

, ==×

































−

−
=∆

∑
=

knjQ

vcaRVSAn

vcaRVSA
Q kshedn

j
jk

jk
VCAshed jk

QQ VCAjkshedVBpjjBpshed w ∆×=∆ ∆ ,,

(9)

(10)

© 2016 Adewole, Adeyemi Charles All Rights Reserved

 Total load to shed per VCA per load bus



SIPS elements for undervoltage load shedding

METHODOLOGY

Figure 3: System Integrity Protection Scheme (SIPS)
© 2016 Adewole, Adeyemi Charles All Rights Reserved

SIPS algorithms in PLC PLC/IED/RTDS

RTDS Model

IEC 61850 GOOSE 



Testbed used at CSAEMS-CPUT
 RTDS, PMUs, PDCs, IEDs, GPS Clocks, PLC, Network Switches

METHODOLOGY

Figure 4: Implemented WAMPAC testbed
© 2016 Adewole, Adeyemi Charles All Rights Reserved



METHODOLOGY

S/N RTDS Card Function Nr. 
1 PB5 Processor card 6
2 GPC Processor card 3
3 GTWIF Work station interface 4
4 GTNET Communication protocols 

(PMU, GSE, SV, DNP3)
5

5 GTNET X2 Communication protocol X2
(GSE, SKT)

1

6 GYSYNC Time synchronization 2
7 GTAO Analogue output card 2
8 GTAI Analogue input card 1

Table 3: RTDS Resources at CPUT (4 Racks)



Test System Model

METHODOLOGY

PMU

Figure 5: New England 39-bus test system



METHODOLOGY

RSCAD Draft

Figure 6: (a) RSCAD draft; (b) processor assignment



METHODOLOGY

PMU Parameters:
 IEEE C37.118.1-2011
 P-Class
 Positive sequence phasors V1 & I1
 Analogue measurement and digital word
 Polar format, real values, 60 fps, CFG-2
 IRIG-B time sync from the GTSYNC card

RSCAD Draft
GTNET-PMU 
Component

GTNET-PMU Card

PMU

Figure 7: RSCAD-PMU component



METHODOLOGY

SCD editor

SEL-451 SEL-3378
IED SVP (PDC/PLC)

GTNET-GSE Card

RSCAD Draft
GTNET-GSE 
Component

superPDC

IEC 61850 GOOSE

Figure 8: (a) RSCAD-GSE component; (b) RSACD SCD editor 
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RSCAD Runtime

Figure 9: Runtime module with meters and controls



METHODOLOGY

PMU vector plots

Bus measurements

RSCAD Runtime

Figure 10: Runtime module with meters and PMU vector plots
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Simulation: Dynamic Analyses using the RTDS
Combinations of small disturbances & large disturbances
Case Studies:
 Case Study 1: Increased system loading
 Case Study 2: N-2  line contingencies + load increase
 Case Study 3: N-2 generator contingencies + load increase
 Case Study 4: Load increase + transformer ULTC & 

Generator OXL dynamics

EXPERIMENTAL RESULTS

Dynamic Load
Scheduling

Figure 11: Real-time dynamic load scheduling



Testing with PMU Connection Tester

EXPERIMENTAL RESULTS

Figure 12: PMU connection testing



Testing with RTDS PMU Utility
EXPERIMENTAL RESULTS

Figure 12: PMU connection testing

TVE: 1%
FE:  0.005 Hz

RFE:   0.01 Hz/s



Ethernet Capture using Wireshark Network analyzer
EXPERIMENTAL RESULTS

Figure 13: Synchrophasor packet sniffing using Wireshark



Aggregation using the SEL-5070 PDC
EXPERIMENTAL RESULTS

Figure 14: Aggregation of PMU measurements using the PDC



Case Study 1
EXPERIMENTAL RESULTS

Figure 15: Case Study 1: Real-time plots of voltage phasors and 
generator MVAr for increased system loading

Load increase



Case Study 2
EXPERIMENTAL RESULTS

Figure 16: Case Study 2: : Real-time plots of voltage phasors and 
generator MVAr for N-2 Line contingency and increased system loading

Loss of line

Load increase



Case Study 3

e Study 2: RVSA Indices

EXPERIMENTAL RESULTS

Figure 17: Case Study 3: Real-time plots of generator-derived indices for increased
loading conditions, line - generator contingencies, and OXL operation

Line contingency

Generator contingency

Load increase

Voltage collapse point

Generator OXL

operates



EXPERIMENTAL RESULTS

Figure 18: Increased loading (a) Without SIPS; and (b) with SIPS 
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EXPERIMENTAL RESULTS

Figure 19: (a) Load increase and line contingency; (b) generator 
contingencies
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 Three generator-derived RVSA indices 
based on PMU measurements
 Comparison of the various RVSA indices.
 EGSCR index gave the best performance
 Less sensors, less measurements, 
 ease of practical implementation 

 SIPS using undervoltage load shedding

 A real-time ‘proof-of-concept’ testbed was
implemented

 Future work: Impact of pervasive network conditions and 
cyber security in wide area applications

CONCLUSION
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