

Fast Frequency Response from HVDC Systems to AC grids Modelled using RTDS

Name: Dr. Oluwole Daniel Adeuyi

Date: September 15, 2016

Venue: RTDS European User Group Meeting.

Cardiff University, UK

- Ranked 5th in the UK for the quality of our research and 2nd nationally for the impact of our research.
 - The HVDC and Power Electronics research group has a focus on developing technology for HVDC grids.
 - 20 academics/PhD students/ Postdocs/Visiting academics working in this area with
 - Over £5.2 million of research grants for ongoing projects
 - The main research topics are:
 - ✓ Fast Frequency support HVDC-connected offshore wind farms
 - ✓ Multi-Terminal VSC-HVDC (MTDC) Fault-ride-through Capability
 - ✓ Integration of offshore wind farms using MTDC grids
 - ✓ Flexible direct current flow control device in MTDC grids
 - Sub-Synchronous Resonance (SSR) damping through VSC & TCSC control

Introduction

PRIFYSGOL CAERDYD

□ Drivers for development of Offshore Grids in the UK

Renewable Energy Targets

- Increasing wind capacity:
 - o Operational in 2015
 - > 7 GW Onshore
 - > 5 GW Offshore
 - o Planned to 2020
 - > 5 GW Onshore
 - > 4 GW Offshore

Remote offshore wind farms will use VSC-HVDC transmission.

Fig. 1: Geographical distribution of installed wind capacity [1]

[1] RAEng, "Wind Energy - implications of large-scale deployment on the GB electricity system," London, 2014.

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD 4

Introduction

Drivers for development of Offshore Grids in the UK

- Electricity
 Interconnection
 Targets
 - 4 GW Existing
 - 11 GW Planned to 2020

Fig 2: Map of existing and proposed GB electricity interconnection projects [2]

[2] DECC, "Delivering the UK Energy Investment: Networks," London, 2015.

□ Key challenges:

- Lack of inertia from variable speed wind turbines & HVDC links
- I1 GW HVDC-connected generation capacity would replace 13 GW synchronous generation
- System inertia reduction increases risk of frequency control and system operation

□ How to control frequency of AC grids with low inertia?

Uses the energy transferred from:

Kinetic Energy stored in Wind Turbine rotating mass

$$\Delta E_{ko} = \frac{1}{2} J \omega_0^2 \left(1 - \frac{\omega_1^2}{\omega_0^2} \right)$$
(1)
$$J - \text{moment of inertia} \\ \omega_1, \omega_0 - \text{measured and synchronous rotor speed}$$

Additional power from Other AC system (e.g. Norway grid)

Electrostatic Energy stored in MTDC Capacitance (Very small contribution)

$$\Delta E_{MTDC} = \frac{1}{2} N_T \cdot C_e V_{dc0}^2 \left(1 - \frac{V_{dc1}^2}{V_{dc0}^2} \right) \quad (2)$$

 C_{e} – capacitance of each VSC

 N_T – number of terminals in the DC grid

 V_{dc1} , V_{dc0} – measured and rated dc voltage

- Wind Turbine Inertia \rightarrow Limits Rate of change of Frequency
- Active Power Transfer \rightarrow Contains Frequency Deviation

3-Terminal VSC-HVDC System

Normal Operation

Fig 3: Control blocks and schematic diagram of a 3-Terminal VSC-HVDC System

- GSC1 regulates DC voltage and provides power balance to other AC system
- GSC2 regulates DC voltage and provides power balance to main AC Grid
- WFC3 extracts maximum power from wind farm

3-Terminal VSC-HVDC System

Coordinated Control

Fig 4: Control duties of the HVDC converters in the case of CC.

• An f vs. V_{dc} droop regulates DC Voltage on GSC2 connected to disturbed AC grid

- A **P** vs. **V**_{dc} droop on GSC1 connected to the other AC system.
- A V_{dc} vs. f droop is used in the offshore wind farm converter

3-Terminal VSC-HVDC System

Alternative Coordinated Control Offshore

- An f vs. P droop regulates Active Power from GSC2 to disturbed AC grid
- A **P** vs. **V**_{dc} droop on GSC1 connected to the other AC system.
- A V_{dc} vs. f droop is used in the offshore wind farm converter

CARDIFF UNIVERSITY PRIFYSGOL CAERDY 9

Simulation Results

- □ With 1 GW two-level VSC type & 1 GW Wind Farm
- Comparison of the two frequency control schemes:

Other AC System (Norway) Active Power

Main AC Grid Active Power

→ Coordinated Control

→ Alternative Coordinated Control

Wind Farm Converter DC Voltage

Offshore AC Frequency

Main AC Grid Frequency

Wind Farm Converter Active Power

Experimental Test Rig

Configuration

Fig 6: Configuration of the experimental platform

Experimental Test Rig

Set-up

Grid

MTDC Test Rig

Fig 7: Setup of the experimental platform

Hardware in the Loop Test using RTDS

Fig 8a: Schematic diagram with operational voltages

Simplified AC Grid Modelled in RTDS

- Main AC Grid
 - Frequency dependent load model

Fig 9: Controlled voltage source and load model

 Simplified GB Power System Model

Fig 10: Transfer function blocks of the GB grid

Simulation and Experimental Results

Simulation

Wind Farm Converter Active Power

Main AC Grid Active Power

Main AC Grid Frequency

Experimental

Wind Farm Converter Active Power

Main AC Grid Active Power

Main AC Grid Frequency

- Fast Frequency response from MTDC limits RoCoF and contains frequency deviation on disturbed AC Grids.
- During the case of CC, the WT recovery period results in a further drop of system frequency
- In the case of ACC, the other AC system supplies the WT recovery power
- RTDS-connected power amplifier creates AC grid voltage with frequency disturbance for experimental VSC test rig.

Developed High Level Controller for VSC HVDC systems

- Mode 0: AC Voltage Control
- Mode 1: Active & Reactive Power Control
- Mode 2: DC Voltage & Reactive Power Control
- Mode 1 fitted with active power versus DC voltage droop
- Mode 2 fitted with DC voltage versus active power droop
- Models fully functional in MATLAB

Thank you for listening.

Any questions please?