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Cardiff University, UK
d Ranked 5t in the UK for the quality of our research and 2"
nationally for the impact of our research.

The HVDC and Power Electronics research group has a focus
on developing technology for HVDC grids.

20 academics/PhD students/ Postdocs/Visiting academics
working in this area with

Over £5.2 million of research grants for ongoing projects

The main research topics are:

v

AR N NN

Fast Frequency support HVDC-connected offshore wind farms
Multi-Terminal VSC-HVDC (MTDC) Fault-ride-through Capability
Integration of offshore wind farms using MTDC grids

Flexible direct current flow control device in MTDC grids

Sub-Synchronous Resonance (SSR) damping through VSC & TCSC
control
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Introduction
O Drivers for development of Offshore Grids in the UK

g o Renewable Energy Targets

Wind farm installed capacities (MW)

it * |ncreasing wind capacity:
o o Operational in 2015
& > 7 GW Onshore

. e > 5 GW Offshore

H 10-100
B 100-500

o Planned to 2020

> 5 GW Onshore
> 4 GW Offshore

o Remote offshore wind farms will
use VSC-HVDC transmission.

Fig. 1: Geographical distribution of installed wind capacity [1]

[1] RAENg, “Wind Energy - implications of large-scale deployment on the GB electricity system,” London, 2014.
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Introduction
Q Drivers for development of Offshore Grids in the UK

o Electricity

Existing Interconnectors Norway Interconnection

1. IFA - 2GW

.ﬂ. -*.-Jr tNed - '\_\ N. Ireland f Tal’getS

3. Moyle GV ' " Denmark

4, East-West - 0.5GW ) - . .
» Netherlands 4 GW EXIStIng

Mature proposed interconnector Republic -

5. Eleclink - 1GW of Ireland Belgium = 11 GW Planned

6. NEMO - 1GW to 2020

7. IFA2 - 1GW

8. FAB - 1.4GW France

9. NSN - 1.4GW

10. Northconnect — 1.4GW
11. Viking - 1.4GW
12. Greenlink = 0.5GW

Fig 2: Map of existing and proposed GB
electricity interconnection projects [2]

[2] DECC, “Delivering the UK Energy Investment: Networks,” London, 2015.
1 Key challenges:
o Lack of inertia from variable speed wind turbines & HVDC links
o 11 GW HVDC-connected generation capacity would replace 13 GW synchronous generation

o System inertia reduction increases risk of frequency control and system operation

4 How to control frequency of AC grids with low inertia?
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Fast Frequency Support from MTDC Systems

000900
o Uses the energy transferred from:

= Kinetic Energy stored in Wind Turbine rotating mass

a)12 J — moment of inertia
1)
( w4, wy — Measured and synchronous rotor speed

1 2
AEkOZEJwO 1_0)_02

= Additional power from Other AC system (e.g. Norway grid)

= Electrostatic Energy stored in MTDC Capacitance (Very small contribution)

2
Vdcl
2

C, — capacitance of each VSC
) (2) Ny — number of terminals in the DC grid

1
AEyrpc= ENT- Ce Valco2 (1 -

VdCO Va1, Vaco — Measured and rated dc voltage

o Wind Turbine Inertia - Limits Rate of change of Frequency

o Active Power Transfer - Contains Frequency Deviation
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e 3-Terminal VSC-HVDC System

o Normal Operation

GSC1 Other
Offshore / Onshore pgst. AC System
Wind Turbines
Vee =1600V MTDC System
Vae =690V Vo =1320kV
fsw =2kHz Voo =380kV 1
Prated =5 MW fow =2kHz » P — Vg droop
N =200 Prated = 1000 MW control
Offshore Offshore AC Vaero Pacto
Wind Turbine Full Converter grid WFC3 GSC2
p Main AC Grid
J_ gs2
*E& . *‘;} x| RE N .y s
s T
i } pu
Generator DC link f
On Controller C\{)%lttre:)ﬁ]IZr E‘-E Offshore Vac pP- Vdc droop
ot | T 77777 control control
Wind Power || Inertia . fur f * * *
extraction CO””0| Vaco fo,o V2o Paczo

Fig 3: Control blocks and schematic diagram of a 3-Terminal VSC-HVDC System

o GSC1 regulates DC voltage and provides power balance to other AC system
o GSC2 regulates DC voltage and provides power balance to main AC Grid
O

WFC3 extracts maximum power from wind farm
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= 3-lerminal VSC-HVDC System
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o Coordinated

Control Ofishore esci
—_—
Other AC
— —W—I System
(Norway)
?
Droop
t. P% .
Offshore Vdce1,0 1,0
wind p,, WECS GSC2 Disturbed
Farm = AC Grid
T T
[Vacl [ f20™
ac Vabc™ . Vg™ -
Vac Control CHo=—Vaeo Af,
f f* Afwf* Ve Ly D c
v roo
|Vac*| Py,—> P

|

*
P2o Vic2,0*

fwfo™ =50 Hz
Fig 4: Control duties of the HVDC converters in the case of CC.

= An fvs. V, . droop regulates DC Voltage on GSC2 connected to disturbed AC grid

= AP Vvs. V4 droop on GSC1 connected to the other AC system.
= AV Vs. T droop is used in the offshore wind farm converter
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o Alternative Coordinated

Control

Offshore
wind
Farm
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Fig 5: Control duties of the HVDC converters in the case of ACC

= An fvs. Pdroop regulates Active Power from GSC2 to disturbed AC grid

= AP vs. V4 droop on GSC1 connected to the other AC system.

= AV,.Vs. T droop is used in the offshore wind farm converter
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Simulation Results

O With 1 GW two-level VSC type & 1 GW Wind Farm

0 Comparison of the two frequency - Coordinated Control
- Alternative Coordinated Control
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o Configuration

(.

controllerl

.
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GS1 @ 3 Vi =140V
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PMSM: Permanent Magnet Synchronous Motor
PMSG: Permanent Magnet Synchronous Generator

Fig 6: Configuration of the experimental platform
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Fig 7: Setup of the experimental platform
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Hardware In the Loop Test using RTDS

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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Fig 8b: AC Voltage signal transfer from Fig 8c: Current signal transmitted
RTDS to Grid Simulation to GSC2 from GSC2 to RTDS



Simplified AC Grid Modelled in RTDS

a Main AC Grid Af"?
50 Hz
* Frequency GSC1
dependent load PMTo_aisponse
model _||; I .
~ R

Fig 9: Controlled voltage source and load model

Synchronous Power Plants response

: Governor droop _;
= Simplified GB | 1 ;
Power System | R, |
Model | | APu(pu
: Governor actuator Turbine | l Power System
| 1 ., L+sT) R Jl_er\ , | L
: 1+5T, | +5T) L+sTr |l 0 | 2Hes+D] Af(pu)
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Fig 10: Transfer function blocks of the GB grid



Simulation and Experimental Results
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O Simulation
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Conclusions

Fast Frequency response from MTDC limits RoCoF and contains
frequency deviation on disturbed AC Grids.

During the case of CC, the WT recovery period results in a further
drop of system frequency

In the case of ACC, the other AC system supplies the WT recovery
power

RTDS-connected power amplifier creates AC grid voltage with
frequency disturbance for experimental VSC test rig.



Current Work — BEST PATHS Project ﬁ:ﬁa@

0 Developed High Level
Controller for VSC

High Level Controller |
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Thank you for listening.

Any questions please?

17
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