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Overview

 Adaptive protection scheme testing: CHIL
simulation

* DER Inverter controls testing: CHIL simulation

* Coordinated voltage controller testing:

Combined Controller HIL (CHIL) and Power HIL (HIL)
simulation
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1) Adaptive protection testing scheme
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HIL testing-Protection Blinding

» simplified configuration of a Rhodes HV/MV Substation with 2 feeders
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HIL testing-Protection Blinding

[ 3-phase fault at Bus 1.2
J Total short-circuit current = 3,43 kA
[ Short-circuit current through SEL-311B (grid’s contribution) = 0,932 kA

(primary)
d Time for fault clearance = 2,28 s
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HIL testing-Sympathetic tripping

Amps X 100 BUS MV (Nom. kV=20, Plot Ref. KV=20)
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HIL testing-Sympathetic tripping

[ 3-phase fault at Bus 2.1
[ Short-circuit current through SEL-311B (Feeder 1) = 1,51 kA (primary)
- Operating time =400 ms
L Short-circuit current through SEL-587 (Feeder 2) = 3,95 kA (primary)
- Operating time =551 ms
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Evaluation of the Adaptive Protection System

*

)

» The evaluation procedure is composed of three
stages

INACTIVE GRID MODE SHORT-CIRCUIT

&

)

ADAPTIVE LOGIC > VARIATION > SECONDARY TESTS
% In the first stage, the adaptive logic is inactive, and |
the prospect of protection blinding and

sympathetic tripping incidents is confirmed,

depending on the grid operating mode and the
initial protection settings.

ACTIVE ADAPTIVE —~ GRID MODE
LOGIC = VARIATION

*

s Subsequently, the whole adaptive protection logic
is put into effect, and the proper adjustment of
relay setting groups to grid mode variations is EHORERSEINGIGROUEICH AN e

validated.

(0]V) (¢0))"/[H

*

** Finally, in the third stage, the same short-circuit

secondary tests as in the first stage are re- el R et

conducted, demonstrating that adaptive protection

can address the arising DG impacts on distribution OUTCOME:
. ELIMINATION OF DG IMPACTS ON PROTECTION

protection.
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Evaluation of ICCS Adaptive Protection System (2/2)

Relay log file showing Setting Group transition in the proposed adaptive

scheme

10:22:22.798 1IN103 asserted <— Signalto activate Setting Group 2
10:22:22. 808 IN102 Deasserted <— Signal to deactivate Setting Group 1
10:22:22.898 562 Asserted <— Setting Group 2 activated
10:22:22.898 561 Deasserted <— Setting Group 1 deactivated
10:22:24.763 Relay settings changed <— Successful transition from SG1 to

SG2

R/

s The determination of feeder relay setting groups (SGs) in the proposed
adaptive protection system is formulated as a NLP optimization problem.

*

)

*» For each possible configuration, distribution feeders are considered to be
protected by directional overcurrent relays (DOCRs) with the associated SG
enabled.

&

)

% The objective function aims at minimizing the aggregate operating time of both
primary and backup DOCRs installed at the distribution network, subject to
technical constraints imposed by DSO.
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2) CHIL for Islanded and grid connected

operation of VSC

Set Requirements — > Design — > Testing
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Investigated Control methods for VSC

Grid Connected operation Islanded operation

* PISF Voltage Control * PISRRF Voltage Control
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Grid Connected inverter-CHIL

« The measurements from the RTDS are transferred to the target PC (controller)

« The target PC (controller) performs the control and sends the modulating signal
back to the RTDS

RTDS
Simulated
Network

linv, Vgrid

Target PC >
Modulating signal

linv Igrid
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CHIL Test Results-Grid Connected

e PI SF Voltage Control
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« The DC/DC control algorithm regulates the battery power to the new set-point (charge at
1,8kW).

« The DC/AC control algorithm provides that power from the grid by regulating the DC BUS
voltage.

 The reactive power set-point is set to zero and the reactive power is regulated at that value.
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Islanded inverter - CHIL

 The measurements from the RTDS are transferred to the target PC (controller)

« The target PC (controller) performs the control and sends the modulating signal
back to the RTDS

V¢, linv,lLoad ﬁ RTDS
Triphase < % Simulated
: : Network
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+
Current 1 + 5
Control € ———cf Vioad| g
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CHIL Test Results-Islanded(1)

* PR Voltage Control

Vcap
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* At 2sthe load is increased from 1.8kW/0.98 to 4kwW/0.95 power factor and the
DC/AC control algorithm tracks fast the nominal voltage providing the nominal load
power.

« The DC/DC control algorithm provides that power from the batteries by regulating
the DC BUS voltage.
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CHIL Test Results-Islanded(2)
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« After a change in the RMS value of the voltage reference signal the load
voltage tracks fast the new reference signal.
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3) Coordinated Voltage Control -
Simulated Network

» Low voltage Benchmark Network (based on
CIGRE)

® 12 buses

" MV/LV transformer with On-Load Tap Changer - 17
steps - 1.25%,, /step

" 5 residential consumers - 0.85 lagging , 4 PVs - 0.9
minimum power factor (leading or lagging), 1 BESS

» Development of the Coordinated Voltage Control

" Coordinated: Cooperation among the regulating
devices.

® Centralized: Central controller is used for the
coordination.

" Optimal: The algorithm is an optimization problem

® Real-time: The algorithm runs in discrete iterations,
relying on real-time measurements from Smart
Meters and other devices.
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Coordinated Voltage Control — Optimization
Problem Formulation

12 12
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CVC validation: Laboratory Setup

« The CVC algorithm was tested Iin

> pure simulation,

» Software in Loop (SIL) - CHIL,

» finally combined CHIL and PHIL
 Power Hardware in the Loop (PHIL):

» Power equipment (e.g. motor, PV inverter) is incorporated
into a simulated system

» The RTDS handles low level signals. Power Amplification is

necessary.

Scaling Scaling Inut
Uity |- -~ -1 POWER INTERFACE |V; ATCIWATE HRier Lest
- e.g. Pvinverter
Power exchange Power exchange
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CVC validation: Laboratory Setup
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Laboratory Setup for combined PHIL and CHIL of CVC algorithm
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Conclusions

e Active distribution networks require advanced
control functions and effective testing
methods

e HIL testing proves to be an effective way of
testing network controls and component
controls in realistic and flexible conditions
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Thank you for your attention

contact: avassil@mail.ntua.gr, kotsa@power.ece.ntua.gr

www.smartrue.gr
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