

Realistic communications emulation for real-time power system simulation

Paulius Dambrauskas

Steven Blair, Ibrahim Abdulhadi, James Irvine, Graeme Burt

RTDS European User Group Meeting

15-16 September 2016

Change in power system

- A large amount of wind and PV generation is being deployed
- Demand side management is enabling highly distributed control methods
- New types of energy entities are emerging in the smart grid: smart cities, demand side aggregators, community energy schemes, etc.

Problems

- Observability
 - To ensure the flexibility of the changing yet uncertain requirements for the power grid
- Control
 - Need to actively manage the power network, generation, storage and demand
 - To maintain stability and reliability

Communications capable assets in different domains of the UK power grid

[1] A. Hulme, V. Sennes, "DNO - SMART GRID COMMUNICATIONS REQUIREMENTS", Energy Networks Association, 20th Dec 2011. [Online] Available:

http://www.energynetworks.org/assets/files/electricity/engineering/telecoms/eitc/restricted/Reference%20Doc/Telent.pdf

University of

Strathclyde

Assets equipped with communications

[1] A. Hulme, V. Sennes, "DNO - SMART GRID COMMUNICATIONS REQUIREMENTS", Energy Networks Association, 20th Dec 2011. [Online] Available:

http://www.energynetworks.org/assets/files/electricity/engineering/telecoms/eitc/restricted/Reference%20Doc/Telent.pdf

Forecasted assets equipped with communications

[1] A. Hulme, V. Sennes, "DNO - SMART GRID COMMUNICATIONS REQUIREMENTS", Energy Networks Association, 20th Dec 2011. [Online] Available:

http://www.energynetworks.org/assets/files/electricity/engineering/telecoms/eitc/restricted/Reference%20Doc/Telent.pdf

[2] ENSG, "Our Electricity Transmission Network: A Vision for 2020", July 2009. [Online] Available:

http://webarchive.nationalarchives.gov.uk/20100919181607/http://www.ensg.gov.uk/assets/ensg_transmission_pwg_full_report_final_issue_1.pdf

[1] A. Hulme, V. Sennes, "DNO - SMART GRID COMMUNICATIONS REQUIREMENTS", Energy Networks Association, 20th Dec 2011. [Online] Available: <u>http://www.energynetworks.org/assets/files/electricity/engineering/telecoms/eitc/restricted/Reference%20Doc/Telent.pdf</u>

[3] BearingPoint, Figure:' Main technologies used into smart-grid project', Sep 2013. [Online] Available: http://energypoint.bearingpoint.com/europe/2013/09/05/which-communications-technologies-for-ami-projects/

Input Communications Output

Communications

Delay sources

Fixed

- Depends on geographical distance
- Bandwidth of communications technology
- Routing, media access, protocols, etc.

Variable

• Depends on traffic of the communications network

Queuing

Latency based on variable sources

Latency with 4 PMUs worth of traffic (Congestion)

PMU traffic:

- 50 bytes per message
- 50 messages per second

Additional background traffic in % of bandwidth

[6] Golshani Mohammad, Taylor GA, Pisica, I, "Novel performance evaluation of information and communication technologies to enable wide area monitoring systems for enhanced transmission network operation", [Online] Available: http://bura.brunel.ac.uk/handle/2438/11918

Smart grid application requirements

Application	Latency requirements (ms)			Technology
Substation Automation	15-200	<200	Time critical applications	Ethernet, SONET/SDH, MPLS, WiMAX, WiFi, LTE,
Distribution Automation	20-200			
Wide Area Monitoring Systems	200			
Overhead Transmission Line Monitoring	15-200			
Outage Management	2000	<2000	Time sensitive applications	Ethernet, SONET/SDH, MPLS, WiMAX, WiFi, ZigBee, LTE, UMTS
Distribution Management	100-2000			
Home Energy Management	300-2000			
Asset Management	2000			
Meter Data Management	2000			
Advanced Metering Infrastructure	2000			
Distributed Energy Resources and Storage	300-2000			
Demand Response Management	500-5min	<300000(5min)	Latency tolerant applications	Any
Electric Vehicles	2000-5min			

Application and requirements map

Modelling for use cases with high performance communications

University of Strathclyde

Modelling for use cases with low performance communications

Real-time co-simulation

Protection application

Communications emulation

Validated statistic model

22

University of

Strathclyde Engineering

Conclusions

- Integration of new resources and applications will depend highly on communications
- It is necessary to accurately represent the increasingly complex communications networks
- Modelling and emulation of communications will enable more realistic real-time grid simulation

The University of Strathclyde is a charitable body, registered in Scotland, with registration number SC015263