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e Situational awareness (SA) Is the perception
of elements in the environment within a
volume of time and space, the
comprehension of their meaning, and the
projection of their status in the near future
[Endsley].

 SA s an intermediate process In assessing
the status of the system in order to make
‘Intelligent’ decisions for future development.
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@CLEMSON Just-in-Time

v

— \Nith proposed WACS
w mm w \\/jth WACS (not designed for delay) |7

e Latency — very important in
building a data analytic
architecture.

e Data Analytics Challenge

e QOperations

 Energy trading

 RT demand response

« Asset management " 5 8

Time in seconds

o Complex Da.ta proceSSIng and Fig.6 Speed deviation of generator G3 with the proposed con-

troller and WACS not designed for the delays for a three-phase

Speed deviation of G3 in rad/s

an alytl CS enV| ro n me nt short circuit at bus 10 (Fig. 1) for ten cycles (166.67 ms) duration
* Hlera‘rChlcaI to dIStrIbUted Ray S, Venayagamoorthy GK, "Real-Time
e M u|t|p|e data classes Implementation of a Measurement based Adaptive
. Wide Area Control System Considering Communication
 [atencies. Delays", IET Proceedings on Generation, Transmission

and Distribution, Vol. 2, Issue 1, Jan. 2008, pp. 62 - 70.
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. IT-OT
S Convergence or Bankruptcy?

* Itis the smart grid infrastructure and the associated use of the data in
decision-making that will ultimately decrease operational costs related to
Improved forecasting of demand, better ability for customers to manage
their loads, enhanced service delivery and reliability, and an infrastructure
that will allow new cost-recovery mechanisms.

* This requires new models of data management including the movement
away from siloed storage and access amid new cyber security concerns.
- Big Data Operational Analytics (BDOA)

« It also calls for a renewed focus on analytics to breakdown big data into
descriptive, predictive and prescriptive subsets.

“The purpose of a business is to create a customer” — Peter Drucker

©G. Kumar Venayagamoorthy — A Presentation at the 2016 RTDS European User’s Group Meeting, Glasgow, Scotland, September 15-16, 2016



VEHMEON  Models in Analytics

Models are the heart and lungs of advanced analytics.

It Is a science and art to develop a model.

"Dynamic, Stochastic,
Computational, and
Scalable Technologies for
Smart Grids,"
Computational Intelligence
Magazine, IEEE , vol.6,
no.3, pp.22-35, Aug. 2011.

CSTM - the integrated cycle of sense-making, decision-
making and adaptation. The knowledge base is the domain of
expertise evolved continuously with experience accumulated.
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EMSON Mind the Gap

» The significant expertise deficit related to big data management, analytics,
and data science is one of the major reasons utilities have not been able
to effectively use smart grid data.

-

« Data scientists not only need to know how to data wrangle, they must also

know how to operate a variety of tools on a variety of platforms fed with
vast amounts of varied data.

 Energy-savvy data scientists are capable of changing the way the utility
views the world and gets business done.

Iﬂfo Kn U“de
n# Matip l'::> ﬂ@ m

“Knowledge has to be improved, challenged, and increased constantly, or it vanishes.”

Peter Drucker
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varesTs Srtuational Intelligence

« Situational intelligence (Sl) is looking ahead how the
situations will unfold over time — immersion into future

* In other words, SA systems present situations based
on some measurements of current states at time t.
Whereas, Sl uses SA at time t and predictions of
future states to predict SA at a time t+At.

« Control centers need to handle big data, variable
generation and a lot of uncertainties, and will need Sl,
that is to derive SA (information, knowledge and
understanding) at time t and project it into time t+At.

* With Sl technology implementations, real-time
monitoring Is possible.
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G CLEMSON

¥ U NI VERSITY

US NSF Research Alliance/Partnership for Innovation Project:
Situational Intelligence for Smart Grid Optimization and
Intelligent Control — lIP #1312260

Objectives: mpacts:

J T _ _ * Energy resilience by improved

« Situation intelligence for real-time operations. reliability, sustainability and

« Maximize penetration levels of variable and economic value.
uncertain generation such as solar & wind . Rapid restoration from outages.
power. _ » Softening of negatives effects of

« Dynamic optimal energy & power management the climate change on the
systems. economy.

» Development of a rapid prototyping laboratory
for real-time smart grid control centers.

Partners & Supporters:
Oy trron s L

Relentless passion for innovation

ALSTOM

Powertech @ "B .
Tie Faet o Tivl, The e of Miawg. - '
el o Oseire yprps
Technologies

- LABORATORIES Mot only possible. Proven.
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mCclEMsony Real-Time Power and Intelligent
e - Systems (RTPIS) Lab

Situational Intelligence Laboratory
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Real-Time Power and Intelligent
— Systems (RTPIS) Lab

ISE CIusfcer

http://rtpis.org
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WCELEMSON

'RTPIS Lab’s PSS Tuning Platform

Four PSSs

Cc7 c9

7~ pss, N
A Vpss,
= —
o R L=

l Speed deviations Aw; Aw, Am; & Awy,
Tuning Algorithm IofG G, G; & G, respectively

(MATLAB :
Platform)

e e
o)

“Multiple Power System Stabilizers Tuning Using Mean-Variance Optimization”, in Proc. 2015 IEEE Intelligent
Systems Appllcatlon to Power Systems (ISAP), Porto, Portugal, September 11-16, 2015



@CLEMSON  Power System Stabilizer (PSS)
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The function of PSS is to add an auxiliary signal to the generator’s
AVR in order to improve the damping of power system oscillations.
PSSs are classified as, A

— Linear Compensators
e.g. - Lead-lag controller

1
L\
|
! e o
— Non-Linear Compensators th U\/ ’T —
b

Speed deviation

The objective function, ] for simultaneous tuning of PSSs:

n N &
Aw sT,, I( 1+ sT) (1 4+ 8T3) |Vess ’=Z Z Z(Aw(t))x(Ax(t—to)xAt)
= K |=> -> > =1 =1 t=tp
1+ sT, (1+sT,)(1+sT,) t = time,
A = constant,
K - gai N = Number of generators,
Twhttm nstant = Number fp rating co dt

T, T, T;&T,- Ph tion t & t,=start & stop time for Calculation respectively

STATE-OF THE ART HN@USTRY P@WER SYSTEM STAIH BILIZERS NEED TO BE ADAPTIVE
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MSO Results — Generator 1

Speed Deviation of G, (pu)

0.3

0.25

0.2
0.15
01

0.05-------

B T T T S S S B B!
Time (s)
Speed deviation of G; with 10 cycles fault duration
— Operating Condition 1 (Area 1 load at bus-7 967MW and

Area 2 load at bus-9 1767MW)
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| . Online Modal Analysis of
GJCLEMSON Y
= Synchronous Generators

15 20 25 30
Time {3}

"”?";i

1

oy oy

rony’s algorithm executed
using PMU data parsed

Gen. 1 Gen.8 | Gen. 16
Modal damping Modal damping Modal damping
and frequencies and frequencies and frequencies

Saraf P, Venayagamoorthy GK, Luitel B, “Online oscillation monitoring of synchronous

generators using parallel-prony analysis”, IEEE conference on Innovative Smart Grid
Technologies (ISGT), February 2014, Washington DC, USA.
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GJCLEMSON Power System Model with PV

Two-Area Four-Machine Test System with 210MW PV Plant

PMU AREA1 PMU AREA2

PMU G1 ﬂ E PMU G3

7 9 BT
=T : 10
Gl 1 5 6 110 km 110 km 14 3 G3
l 25 km I 10 km 10 km 25 km I @ I @
O—T@ :
i 20 kv 230 kv _E1 :
|
E PMU G2
: T T
1
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Freguency

Solar Irradiance
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VEEMSON  Frequency Events o

Area 1 Frequency Original Governor Parameters

60.2

60.15 7

60.1

»
=
o
o

Frequency (Hz)
[e)]
o

59.95

59.9

5985 | | | | | | |
0 o) 10 15 20 25 30 35 40

Time (seconds)

Frequency Events 6
Max Frequency (Hz) 60.14
Min Frequency (Hz) 59.88
Settling Time (s) 80
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WCLEMSON Governor Tuning

Two-Area Four machine power

PMU AREA2
system with PV plant %EM m
7 9 10

8
110 km 110 km

Governor (Govl, Gov2, Gov3 & Gov4) Model with 10km |25km
T,, T, and T; parameters
Load Reference T =1
= I
Frequency + N | c7

e . Droo:G-in - G - (H‘-"Tg) _7:“ : I I
+ 'E' 1+.\'l- 1+ ST; | :

1
AGC output I I
' |

I
| AREA 1 |
e o — l- e I -l
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|

I Generator

Frequencies
| §,5, &%,
I

v

Time

Governor Tuning Algorithm Synchronized

with PSO
(MATLAB Platform)
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VEEMEON Improved Governors

Area 1 Frequency GOV1 - GOV4 Optimized

60.3 I
—Original
—GOV4 Tuned
60.2
N
T 60.1
>
Q
=
g 60
o
o
I
59.9
59.8
0 5 10 15 20 25 30 35 40
Time (seconds s .
Statistics Original ( ) Statistics Optimized
Frequency Events 6 Frequency Events 3
Max Frequency (Hz) 60.29 Max Frequency (Hz) 60.28
Min Frequency (Hz) 59.79 Min Frequency (Hz) 59.88
Settling Time (s) 80 Settling Time (s) 22

“Optimal Tuning of Governors on Synchronous Generators in a Multi-Area Power System with a Large Photovoltaic Plant”, IEEE

PES PowerAfrica Conference, Livingstone, Zambia, June 28 — July 2, 2016.
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PV Plant Model and Control

210MW Utility-Scale PV-Plant in Transmission Network

4kV

52.5MW
75MVA
+
- Buck
; Converter
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+
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" Converter
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- Buck
ucl
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Converter
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75MVA
+
QB Buck
Converter

Variable DC Voltage

and Current

Maximum Power
Point Tracking

75MVA
Lf 2kV / 11kV
____rYYN 3C 3
J_ JIC
CfT
R l
lmr| Zml
75MVA
Lf 2kV /1 11kV
C D
J_ pl e
C./'I
™ T X
|m| sm,
75MVA
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Y 3¢ 0
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|m4| Zm, Bus 12
Regulated AC

Current Injection
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DC-Link Voksge Controd
i — —h — — — —  — ————— T
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Resctive Power Control
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* Inner control loop i.e. decoupled current control
« Outer control loop:

 DC-link voltage

* reactive power
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VEEMSON  Tuning PI Controllers

Two-Area Four machine power
system with PV plant

PMU AREA1 PMU AREA2

— o e w— w— w—

|
[l

Time

Governor Tuning Algorithm Synchronized

with PSO
(MATLAB Platform)

“Dynamic Performance Enhancement of a Utility-Scale Solar PV Plant”, IEEE PES PowerAfrica Conference,
Livingstone, Zambia, June 28 — July 2, 2016
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G CLEMSON Pl Controller Tuning

The objective of the tuning is to minimize the time response of the active
power and reactive power oscillations at PCC which is injected at bus 12 and
calculating the total fitness value for 2-step changes in solar irradiance

t,—t,
At

J; =Z(AP(t)—Cp)2x(Ax(t—tO)xAt)

tzto

J, =§:(AQ(’[))2 x(Ax(t—to)xAt)

J :Z('Jlk T 'J2k)
k=1
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ICLEMSON Simulation Results

Dynamic responses with respect to irradiance step-changes

250 to 750 W/m?2 750 to 250 W/m?2
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VEEA2E PV Plant Power Prediction

Weather

system

Temperature ’ PV Power
T(t) Pot)

4

ot

l—————— e emm Gumn e —

va (t) »

Solar
Irradiance [(t)

- - - -
- - -

Reservoir based
— m— — = 7(f) learning Predicted PV Power
network P, (t+n)
(ESN/ELIM) n =25, 10,15,20,25,30,60 and 90s
—— o o = ) | B

“Reservoir Based Learning Network for Control of Multi-Area Power System with

Variable Renewable Generation”, Neurocomputing, vol. 170, December 2015, pp.
428-438
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__ Prediction of PV power
- Reservoir Network

Echo State Network (ESN)

Feedback weights
- _ (W,
eservoir
Output
Inputs Input Weight: weights W utputs(Y)
U) w fo
( (Win) (W) W

Zd

[

3
—~ O

out

Output
weights(W,,

Dynamic reservoir
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0 CLEMSON

U NI Y ERGSITY

T

f PV power - ESN e
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Short Term Prediction of PV power

Prediction at

time t for
time instant

t+5
t+10
t+15
t+20
t+25
1))
t+60
t+90
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ESN

(%)

1.1954
2.3811
2.5328
3.0215
3.6592
3.9442
6.0993
7.6080

Testing MAPE

ELM
(%)
4.4389
4.5701
4.6934
4.7822
4.5902
4.3882
6.3959
8.6509



GCLEMSON Areas 1 and 2 AGCs

- “Reservoir Based Learning

+
Af Network for Control of
. As ACE = APy, — A X Af )

p “ o f— APerai|  Multi-Area Power System
I easure = =

D o BN with Variable Renewable
\ Predeted PV Sy N4 —= L Generation”,

~

v
-~ — P?'E-‘f

—

— o, APpor g2

Neurocomputing, vol. 170,
December 2015, pp. 428-
438
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e Coherency analysis is performed offline and the groupings
are used in the development of auxiliary control signals.

 However, in response to various events at different operating
conditions, the coherent groups may differ, and it has been
observed that post disturbance during the transient the
generators switch groups.

 Thus, it Is Important to develop the analysis to be online and
be able to recognize the switching of groups by the
generators in the network.
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@CLEMSON  Online Coherency Analysis of

E R S 1

Synchronous Generators in a Power System

R g srmemiman e
est System =8 E! Ne 'k Power System i
g !
- it 1
i i
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................................................................................

speed in p.u.

Generator index

“Online coherency analysis of synchronous generators in a
power system”, IEEE conference on Innovative Smart Grid

Technologies (ISGT), February 2014, Washington DC, USA.
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U NI ¥YERGESITY

 To damp inter-area oscillations, a Virtual Generator based
Power System Stabilizer (VG-PSS) was developed

« Particle Swarm Optimization (PSO) is adopted to tune the
VG-PSS

« To obtain the cost function for the PSO algorithm, a

Stochastic Subspace Identification (SSI) based model
analysis Is used

10s
14 10s

KT15+1T33+1
"Ts+1T,5+1

Time-delay o
Compensator Limiter

“Damping Inter-area Oscillations Using Virtual Generator Based Power System

7] 01
p (1 + sTCl)
c TLP
14T, v

-0.1

A Wy Washout

Stabilizer”, Electric Power Systems Research, vol. 129, December 2015, pp. 126-141.



Coherency based
WCLEMSO Damping Controller
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Coherency based
Damping Controller
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o Artificial iImmune system (AIS) is an emulation of
biological iImmune system

« Adaptive controller can apply AIS concept to
automatically adjust its parameters lmm’ i

System reference input, X . (k)

Controlled

System System output, Az(k)
«

Controller output, Ay(k)

Optimal controller with | _

parameters p,(k)
1

Change of parameters, Apj(k)

X
exp(—x?) s 7l
TS (k)

Schematic of the AIS based control for a dy%i%i_c]l:ystem.

Suppresso
T Cell
A biological iImmune system

“Adaptive Inter-Area Oscillation Damping Controller for Multi-Machine Power Systems”,

Electric Power Systems Research, vol. 134, May 2016, pp. 105-113.



 The parameters of the
adaptive controller are
tuned with PSO.

 During power system
transients, the AIS is
able to adjust the VG-
PSS parameters,
making the controller
able to adapt to
various operating || e
conditions.

........

H T Sl kD

H

H g ] T

i t 3
T b Ty I
H a

H m E

' Thp Lk}

H

'

H

'

Schematic diagram of the AIS based controller.
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ASON Adaptive Damping Controller
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WYCELEMSON Outline

e Introduction
« RTPIS Lab @ Clemson
e Optimal Controller Tuning
« Enhanced AGC Control
« Coherency Analysis & Wide Signals based Control
 SmartPark
 Cyberattack

e Summary
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—~  Predictive Optimal Control of

Wind Power Fluctuations
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e Predictive Optimal Control of

wWind Power Fluctuations
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One Step Ahead: Short-Term Wind Power Forecasting and Intelligent Predictive Control Based on Data
Analytics”, IEEE Power & Energy Magazine, Vol. 10, No. 5, September/October 2012, pp. 70-78



MSON Outline

Introduction

RTPIS Lab @ Clemson

e Optimal Controller Tuning

« Enhanced AGC Control

« Coherency Analysis & Wide Signals based Control
« SmartPark

 Cyberattack

Summary
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WCLEMSON  PMU Man-In-The-Attack

PMU measurements make near real-time operations
possible.

However, PMU based operations also make the power
system sensitive to network disturbance and cyber-physical
attacks.

Side-channel analysis can be used to detect a Man-In-The-
Middle (MITM) attack.
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YEEMSEN  PMU Man-1In-The-Attack

Side-channel analysis extracts information by observing
Implementation artifacts.

The side-channels in PMU traffics are used to identify normal
traffics.

Alarm significant deviation from normal patterns and further
identify MITM attacks.

Experimental results confirm the effectiveness of a method to
make PMU based operation less vulnerable to attack in
practical network configurations.

©G. Kumar Venayagamoorthy — A Presentation at the 2016 RTDS European User’s Group Meeting, Glasgow, Scotland, September 15-16, 2016



B

PMU Man-In-The-Attack
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WCLEMSON - PMU Man-I1n-The-Attack
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WCLEMSON Results
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One false alarm is expected for every 10000 seconds
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@SLEMSON Summary

 Real-time simulation using the RTDS platform has played,
and continues to, a major role in the RTPIS Lab’s research,

education and innovation over a decade.
« Several students have learned to appreciate the value of

real-time simulation and simulators.
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