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UK Future Grid 2015-2030

Challenges: moving to hybrid AC-DC systems 

Electricity Network Innovation Competition submission from SHE Transmission Ltd – Multi-Terminal Test Environment (MTTE) for HVDC Systems available at https://www.ofgem.gov.uk
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• DC grids can carry large amount of power up to tens of GWs, and are very sensitive to faults on 
the DC sides, and to other contingencies such as sudden trip of converters in particular the 
converter controls the grid DC voltage. 

• Unlike AC systems, the propagation of voltage disturbances can be very rapid, leading to the 
interruption and imbalance of large amount of power between DC grid and surrounded AC 
systems and important parameters such as DC voltages and AC frequency to be adversely 
impacted.

• There  is still a need to be fully understand how existing AC grids will interact with the embedded 
DC grid in order to enable new protection and control strategies to be developed and validated. 



Modelling: DC grid
Meshed DC grid (Cigré workgroup B4-52 considers only this as a real DC grid)

• More nodes to receive/send 
power (higher power transfer 
capabilities)

• Redundant lines (better 
reliability)

• DC flows can not be directly 
controlled

• Reliable DC protection is 
required
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Modelling: DC grid converter technologies
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Modelling: Hybrid AC-DC- grid modelled in 
RTDS

Simulating very stressed events and understanding the resilience (the 
dynamic interaction) of the hybrid AC-DC grid



Modelling: AC grid model

• Representing key generation, load areas, and main transmission routes
• Based on real power flow data of eight areas as presented in the ETYS of the UK NG
• Each AC generator is modelled as an aggregated large machine + the widely used IEEE 

ST1 static type excitation and GAST gas turbine and speed governor to control the 
generators

• The demand in each area has been modelled as a fixed average real and reactive 
power based on UK 2017 winter peak consumption 



Modelling: Validation tests
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Simulated frequency response profile at Bus2A
Simulated frequency response at Bus2D
Real recorded frequency response profile
Real recorded frequency response profile

• Initial load flow validation (initial conditions)
to evaluate the steady state performance of the model

• Frequency (dynamic) response test
to compare the model performance against real recorded frequency 
deviation data obtained from PMUs (the loss of ~1GW on 11th of Jan 2016 
due to the trip of the UK-France HVDC interconnector)
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Modelling: DC Grid model
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Modelling: Validation tests
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Real power response (a) ABB PSCAD/EMTDC 
detailed model results, (b) RTDS simulated results

DC voltage response (a) ABB PSCAD/EMTDC detailed model 
results, (b) RTDS simulated results

[1] Mitra, P.; Vinothkumar, K.; Lidong Zhang, “Dynamic performance study of a HVDC grid using real-time digital simulator”, Complexity in Engineering (COMPENG), 2012 
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Simulation studies: extreme contingency 
studies

- AC grid-side three-phase symmetrical fault (followed by trip of the 
associated VSC station)

- Pole-to-pole DC fault and cascading trips of VSCs



AC grid-side three-phase symmetrical fault
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Frequency response profile for the fault at F2
Frequency response profile for the fault at F1  
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Frequency response following the trip of the VSC3
Frequency response following the trip of the VSC2 
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Frequency response during the fault at F2
Frequency response during the fault at F1  
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DC Voltage profile for F1 fault
DC Voltage profile for F2 fault
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Real power between the VSC2 station and grid2
Real power between the VSC3 station and grid2
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Simulation studies



Pole-to-pole DC fault is applied at Bus2dc 
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Real power between the VSC2 station and grid2
Real power between the VSC23 station and grid2
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DC Voltage P+ to Earth at the VSC1 terminal
DC Voltage P- to Earth at the VSC1 terminal
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Simulation studies
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Simulation studies
Pole-to-pole DC fault followed 
by cascading trip of VSCs 



Protection solution
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DC grid protected by current direction-based fast 
and selective protection scheme

New DC current direction-based 
protection algorithm has been 
prototyped on radial last mile DC 
distribution network and is being 
investigated for MTDC  

Abdullah A S. Emhemed; Kenny Fong; Steven Fletcher; Graeme Burt,“Validation of Fast and Selective Protection Scheme for an LVDC Distribution 
Network”, IEEE Transactions on Power Delivery, Vol. PP, No 99, Jul 2016.



• Large penetration of HVDC connections into power networks can significantly change 
the behaviour and response of existing power systems

• New controls and protection strategies will be required to maintain system 
stability and reliability

• The validated hybrid AC-DC grid model  in RTDS  (reduced AC dynamic model + 
MTDC) has provided a useful tool with greater flexibility which can potentially 
used to support 

– proof of concept where changes can be easily implemented
– test the performance of other active control units such as FACTS, STATCOM, VSCs, and 

etc.
– enabling a wider variety of studies (interaction between DC systems and converters and 

AC grid under different faulted locations)
– investigate the impact of offshore wind generation to be carried out at reasonable 

accuracy level
– quantify the impact of reduced inertia due to the integration of HVDC and high density of 

wind generation on the systems control and protection performance 

• The new protection solution has the potential to provide fast detection of 
different DC faults, and fast interruption of the faults at low levels with a good 

   

Conclusions
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