High Speed Digital Distance Relaying Scheme using FPGA and IEC 61850

Shane Jin

Real Time Simulation Lab University of Saskatchewan

RTDS Applications & Technology Conference Winnipeg, Canada May/16/2017

Outline

- Introduction
- Phaselet-based Distance Relay
- Hardware Implementation
- Test Platform
- Results
- Summary

Real Time Simulation Lab

Group Lead: Prof. Rama Gokaraju **Real Time Digital Simulator (RTDS)**

- 6 Processor Cards (4 GPC + 2 PB5)
- 2 GTNET Network Interface Cards
- Support: IEC 61850 (SV, GOOSE), DNP3, PMU(24 units max), Playback
- GTFPGA Firmware
- GTAI/GTAO

IEDs & Others

SEL 411L Advanced Line Differential Relay
GE L90 Line Differential Relay
GE D60 Line Distance Relay
GE F60 Feeder Protection Relay
SEL 2407 GPS Clock
Techron Amplifier

Field Programmable Gate Arrays (FPGA)

1.Xilinx Virtex-6 FPGA ML605 Evaluation Board

2.Xilinx Virtex-7 FPGA VC707 Evaluation Board

3. Altera DE4 Development Board

Current Projects

- High Speed Digital Protection
- Power System Stability Analysis Using Wide Area Measurement System
- Wind Generator Modeling
- Fault Location in PV system/Wind Farm

Introduction: Motivation

State-of-art numerical relay:

1 power cycle (16.667

milliseconds)

Gap

•Extra high voltage EHV/EHV transmission system requires sub-cycle (~10 milliseconds)

1 ms early detection: stability limit goes up by ~15 MW¹

Solid state relay: 0.25~0.5 cycle

Circuit breaker technology: 0.5~1 cycle

[1] E. O. Schweitzer, B. Kasztenny, A. Guzm?an, V. Skendzic, and M. V. Mynam, "Speed of line protection - Can we break free of phasor limitations?" in 68th Annual Conference for Protective Relay Engineers, pp. 448-461, 2015.

Introduction: Motivation

Algorithm: Variable Filtering Window

Algorithm: Phaselet

P is a factor of N. For example: N=80 while P =4.

[1] M. Adamiak and W. Premerlani, "A new approach to current differential protection for transmission lines," in Electrical Council of New England Protective Relaying Committee Meeting, October 1998.

Algorithm: Magnitude Error

Probability density function (PDF) for magnitude error:

$$f(r) = \frac{2r}{R} e^{\frac{-(r^2 + \bar{r}^2)}{R}} I_0 \left(\frac{2\bar{r}r}{R}\right)^1$$

[1] S. Jin, R. Gokaraju, R. Wierckx, and O. Nayak, "High speed digital distance relaying scheme using FPGA and IEC 61850," IEEE Trans. on Smart Grid, early access, 2017.

[1] S. Jin, R. Gokaraju, R. Wierckx, and O. Nayak, "High speed digital distance relaying scheme using FPGA and IEC 61850," IEEE Trans. on Smart Grid, early access, 2017.

Algorithm: Standard Deviation

STANDARD DEVIATION AND REACH SETTING UNDER DIFFERENT FILTERING WINDOWS

w(cy)	0.45	0.5	0.6	0.7	0.8	0.9	1
$\sigma_r(n)$	22.9%	21.8%	20.3%	19%	17.7%	16.5%	15.6%
$\sigma_{\theta}(n)$	13.4^{o}	13.1^{o}	12.6^{o}	11.5^{o}	10.2^{o}	9.4^{o}	9.2^{o}
reach	70.1%	72.4%	74.2%	74.7%	76.3%	78.4%	80.2%

Algorithm: Combine Magnitude and Angle error

Algorithm: Adaptive Reach Setting

STANDARD DEVIATION AND REACH SETTING UNDER DIFFERENT FILTERING WINDOWS

w(cy)	0.45	0.5	0.6	0.7	0.8	0.9	1
$\sigma_r(n)$	22.9%	21.8%	20.3%	19%	17.7%	16.5%	15.6%
$\sigma_{ heta}(n)$	13.4^{o}	13.1^{o}	12.6^{o}	11.5^{o}	10.2^{o}	9.4^{o}	9.2^{o}
reach	70.1%	72.4%	74.2%	74.7%	76.3%	78.4%	80.2%

Hardware Implementation: Overall

- IEC 61850 Communication
- Distance Element
- State Machine (global control)

Hardware Implementation: IEC 61850

Hardware Implementation: State Machine

Hardware Implementation: Resource Utilization

FPGA HARDWARE RESOURCES UTILIZATION

Resources	Slice Registers	Slice LUTs	DSP Blocks
Available	301440	150720	768
Usage	149279 (49.5%)	111258 (73.8%)	526 (68.5%)

Test Platform: Overview

Test Platform: IEEE 12 Bus System¹

[1] S. Jiang, U. D. Annakkage and A. M. Gole, "A platform for validation of facts models," IEEE Transactions on Power Delivery, vol. 21, no. 1, pp. 484–491, 2006.

Test Platform: RTDS Model

Test Platform: GTFPGA

Test Platform: GTFPGA

Results: Speed: L-G Faults

^[1] GE Digital Energy, D90 plus line distance protection system instruction manual, 2013.

[2] Schweitzer Engineering Laboratories, SEL-421-4, -5 protection and automation system data sheet, May 2015.

Results: Speed: L-L Faults

Fault location as % of reach setting

[2] Schweitzer Engineering Laboratories, SEL-421-4, -5 protection and automation system data sheet, May 2015.

^[1] GE Digital Energy, D90 plus line distance protection system instruction manual, 2013.

Results: Speed: 3-phase Faults

^[1] GE Digital Energy, D90 plus line distance protection system instruction manual, 2013.

[2] Schweitzer Engineering Laboratories, SEL-421-4, -5 protection and automation system data sheet, May 2015.

Results: SV/GOOSE Latency

Results: GTFPGA Latency

- Consistent with that from IEC 61850
- The communication latency of GTFPGA is negligible. 400 ns?

Fault location: 50% Inception angle: 30°

Results: Reliability

Incorrect Tripping Probability

# of lines		2 lines		
Method	FCDFT	Phaselet-no consideration of phase angle error	Phaselet	Phaselet
Line-ground	0%	8%	2%	0%
Line-line	0%	8%	1%	0%
Three-phase	0%	0%	0%	0%

Summary

- Phase angle error analysis is proved to be equally important as the magnitude error. The proposed adaptive Mho characteristic can improve relay reliability.
- > FPGA relay has the advantage of speed:
 - \succ make secure trip decision in 0.6~0.8 cycles
 - \triangleright processing time for each SV packet is 4.04 µs
- ➢IEC 61850 communication latency is ~5.23 ms (2-way). It matches the standard criteria (specified in IEC 61850-5, Type 1A, Class P2/3 messages, 3 ms for one way).
- > GTFPGA latency is negligible when paired with external FPGA device.

Acknowledgement

- ≻ Mr. Rudi Wierckx, RTDS Technologies Inc.
- ≻ Mr. Om Nayak, Nayak Corporation.
- Prof. Rama Gokaraju
- Financial support from RTDS Technologies Inc. & NSERC Engage

Thank you!

Q & A