RTDS-FPGA-based real-time simulation platform for modern power systems

By: Ramin Mirzahosseini & Prof.Reza Iravani

Outline

1-Introduction

- 2- FPGA-based simulation of power network
- **3- Simulation of Power Electronic Converters (PECs)**
- 4- Simulation of Electrical Machines (EMs)
- 5- Parallel simulation between RTDS and FPGA
- 6- Real-time simulation platform

Introduction

Real-time simulation application Hardware-In-the-Loop (HIL) test for power systems control/protection:

1-Algorithm Development

3- Field installation

Statement of the problem

HIL tests are necessary for modern power system, e.g., microgrids

Real-time simulation challenges:

1- Simulating a large coupled network using small time-steps

2- Accurate representation of component models especially PECs

for EMT simulation

3- Floating-point arithmetic is required

UNIVERSIT

Objectives

- Real-time simulation of large networks using small time-step (µs-range)
- Precise representation of **PEC**s
- Precise representation of **EM**s
- Using Universal Line Model for parallel simulation

-Fixed hardware design

-Using standard floating-point arithmetic

2- FPGA-based simulation of power network

Conventional network formulation based on Modified Nodal Analysis (MNA) 4 tasks:

- **1- Independent source calculation**
- 2- RLC history current calculation
- 3- Subsystem history calculation

$$\begin{bmatrix} \mathbf{G} & \mathbf{A}_{g} \\ \mathbf{B}_{g} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{v}^{n+1} \\ \mathbf{i}_{vs}^{n+1} \\ \mathbf{Y} & \mathbf{x}_{node}^{n+1} \end{bmatrix} = \begin{bmatrix} \mathbf{u}_{i}^{n+1} \\ \mathbf{v}_{s}^{n+1} \\ \mathbf{u}_{node}^{n+1} \end{bmatrix}$$

4- Solution of the equations
$$x_{node}^{n+1} = Y^{-1}u_{node}^{n+1}$$

Structure of \mathbf{u}_{node}^{n+1}

prevents Prallelism

The solution of the network (4) can not be started until first three (1,2,3) tasks are done.

- prevents fixed hardware design

It depends on the network topology

Proposed FPGA-based formulation of network equations

RMNA formulation

K_{*SI*}: node incidence matrix

$$\mathbf{b}_{node}^{n+1} = \begin{bmatrix} \mathbf{b}_s^{n+1} \\ \mathbf{i}_h^{n+1} \\ \mathbf{b}_{ss}^{n+1} \end{bmatrix} = \mathbf{K}_{SI} \mathbf{u}_{node}^{n+1}, \qquad \mathbf{x}_{node}^{n+1} = \mathbf{H}_{RMNA} \mathbf{b}_{node}^{n+1}, \qquad \mathbf{H}_{RMNA} = \mathbf{K}_{SI} \mathbf{Y}^{-1}.$$

Advantages of RMNA:

-enables fixed hardware (It does not depend on the topology)

-Parallelism

- -Appropriate scheduling of tasks based on:
 - -Input data requirement from previous time-step
 - -the latency of the their modules

Proposed architecture based on RMNA

3- Proposed Partitioning method for PEC simulation

Implementation of proposed Partitioning method

step1

step2-Needs a separate hardware, PEC module

step3 Needs modifying the concat module

Scenario: Start-up

Verification of the proposed partitioning method

4- Proposed Electrical Machine (EM) model

Proposed Constant-Parameter-Voltage-Behind-Reactance (CPVBR) for EMs regardless of L_q "/ L_d " Implicit stiff LMS integration method

$$x^{n+1} + (a-2)x^n + (1-a)x^{n-1} = \Delta t \, a \, f(x^{n+1}, t^{n+1}), \quad 0 < a \le 1,$$

CPVBR model interface for IM, SM, PMSM

EM simulation task: calculation of voltage sources e_a ", e_b " and e_c " -In **parallel** with the rest of the tasks

Implementation of the proposed CPVBR EM model

Features of the EM module:

- It has fixed hardware and can represent

SM, PMSM and IM

(up to 2 windings on each axis)

- Each EM module require <2% of FPGA

resources

- It can simulate EMs regardless of system configuration and EM dynamic saliency
- It is in **parallel** with the rest of the modules

Verification of the proposed CPVBR model

5-Transmission line model for parallel simulation

Verification of IHULM module

Parallel simulation case

6- FPGA-based real-time simulation hardware platform

- 3 EMs (IM, SM, or PMSM),
- 2.5417µs

Timing diagram of the platform

Time-step = the latency of matrix-vector multiplication module 305 clock cycle @120MHz, **2.5417**µs

Verification of the platform

Case: Microgrid Scenario:Three-phase temporary fault Is applied @ t=1.5s and removed @ t=1.532s

IM responses

Case: Microgrid

DER current responses

Case: Microgrid

Conclusions

-New FPGA-based real-time simulator structure and component models, PEC, EM and

IHULM were proposed, implemented and their accuracy was verified

-The structure is **expandable** based on two approaches:

1- Larger chip for larger coupled grids

(FPGA chips with 2X resource \rightarrow Matrix vector Mult. Module with a 2X performance)

2- Modular expansion: (compatible with power system structure)

Thanks

4-Simulation of Power Electronic Converters (PECs)

Power switch models for EMT simulation

	Switch on	Switch off	Computation burden	Accuracy
ADC model (Common in Real-time)		$ \begin{array}{c} \downarrow \\ R_{SW} \\ \downarrow \\ C_{SW} \end{array} $ $ \begin{array}{c} i_{hSW} \\ \downarrow \\ \downarrow \\ g_{SW} \end{array} $	Affordable (constant admittance matrix)	 Artificial switching loss Oscillation
Two-value resistor model (Common in offline)	Ron= Ron _{Switch}	Roff (large)	High due to 1-variant admittance matrix 2-Iterative switch state determination	Precise

Our work uses this in real-time

Challenge: Time-variant large set of equations

μs-range time-step and 100-200 nodes requires O(n3) ~ 8TFLOPS computation burden for on-the-fly LU factorization

6-Transmission line model for parallel simulation

IHULM Module Design

Model

Rotor

Stator

Frame Frame technique burden systems oscillatory, unstable dq0 Current reasonable injection Compensation dq0 high accurate (variable admittance) abc direct high accurate (variable inductance) direct abc high accurate (variable inductance) CPVBR dq0 direct (?) depends on dynamic abc reasonable saliency Ld'' = Lq''Ld" ≠ Lq"

Interface

Computational

Performance for stiff

UNIVERSITY OF TORONTO

Model	Rotor Frame	Stator Frame	Interface technique	Computational burden	Performance for stiff systems
QD	dq0	dq0	Current injection	reasonable	oscillation, instability
QD	dq0	dq0	Compensation	high (variable admittance)	accurate
PD	abc	abc	direct	high (variable inductance)	accurate
VBR	dq0	abc	direct	high (variable inductance)	accurate
CPVBR	dq0	abc	direct	Reasonable (Constant Parameter)	(?) depends on dynamic saliency Ld" = Lq" Ld" ≠ Lq"

EM models for EMT analysis

Objective:

Devise an EM model

- Compatible with PEC simulation technique

and design a FPGA-based EM module

- -with fixed-hardware
- for different types of EM
- regardless of system configuration
- regardless of EM parameters (dynamic saliency)

Ex. of a numerically stiff system

Proposed CPVBR for EMs with $(L_d" \neq L_q")$:

Implicit stiff LMS integration method

UNIVERSIT

$$x^{n+1} + (a-2)x^n + (1-a)x^{n-1} = \Delta t \, a \, f(x^{n+1}, t^{n+1}), \quad 0 < a \le 1,$$

EM simulation task: calculation of voltage sources e_a ", e_b " and e_c " -In parallel with the rest of the tasks

CPVBR EM model

VBR

previous time-steps

$$\begin{split} \mathbf{L}^{"}(\theta) &= \begin{bmatrix} L_{s} + \frac{L_{mq}^{"} + L_{md}^{"}}{3} & -\frac{L_{mq}^{"} + L_{md}^{"}}{3} & -\frac{L_{mq}^{"} + L_{md}^{"}}{3} \\ -\frac{L_{mq}^{"} + L_{md}^{"}}{3} & L_{s} + \frac{L_{mq}^{"} + L_{md}^{"}}{3} & -\frac{L_{mq}^{"} + L_{md}^{"}}{3} \\ -\frac{L_{mq}^{"} + L_{md}^{"}}{3} & -\frac{L_{mq}^{"} + L_{md}^{"}}{3} & L_{s} + \frac{L_{mq}^{"} + L_{md}^{"}}{3} \end{bmatrix} \\ &+ \frac{L_{d}^{"} - L_{q}^{"}}{3} \begin{bmatrix} \cos(2\theta) & \cos(2\theta - \frac{2\pi}{3}) & \cos(2\theta + \frac{2\pi}{3}) \\ \cos(2\theta - \frac{2\pi}{3}) & \cos(2\theta - \frac{4\pi}{3}) & \cos(2\theta) \\ \cos(2\theta - \frac{2\pi}{3}) & \cos(2\theta - \frac{4\pi}{3}) \end{bmatrix} \end{split}$$

Proposed CPVBR for EMs with $(L_d" \neq L_q")$:

Implicit stiff LMS integration method

$$x^{n+1} + (a-2)x^n + (1-a)x^{n-1} = \Delta t \, a \, f(x^{n+1}, t^{n+1}), \quad 0 < a \le 1,$$

EM fixed-hardware module design approach

2- FPGA-based simulation of power network

- Combined MNA and State-Space Formulation
 - Independent sources
 - RLC Branches
 - Transformers
 - State-Space Subsystems

- 1- Independent source calculation
- 2- RLC history current calculation
- **3-** Subsystem history calculation

 $x_{node}^{n+1} = \mathbf{Y}^{-1} \boldsymbol{u}_{node}^{n+1}$

- Limitations for FPGA-based implementation:
 - Anti-parallel pattern

4- Solution of the equations

- The solution of the network (4) can not be started until first three (1,2,3) tasks are done.
- Prevents fixed hardware design

The structure of the nodal injection vector depends on the network topology

Model preparation script diagram

	Order of Execution					
	Calculation of RMNA matrix					
Preparation of Intermediate Netlist	and Module parameters	Calculating system matrix				
Independent source	Find: $(\Delta t, \mathbf{a}_s, \mathbf{s}_{type}, \boldsymbol{\varphi}^0, \mathbf{f}_s)$					
History current source update	Find: $(\mathbf{c}_{v}, \mathbf{c}_{h}, \mathbf{i}_{h}^{0})$					
IH-ULM	Find $(\boldsymbol{G}_{Y}, a_{Hdij}s, \boldsymbol{D}_{Hij}s, a_{Ydi}s, \boldsymbol{D}_{Ydj}s)$					
PEC Replace each PECSN by its terminal voltage/current sources	For each PEC find: Y' _{conv} (s)	For <i>i</i> th PEC find: Matrices Y _{eqi} , H _{CONVi} (s), H _{SWi} (s) and H _{eqRMNAi}				
EM Replace each EM by its CPVBR interface $() \longrightarrow m \longrightarrow ()$ $() \longrightarrow m \longrightarrow ()$	For each EM find: Matrices C_{e1} , C_{e2} , D_e , A_{Dr} , B_{Dr} , C_{Dr} , D_{Dr} , and $c_{\omega 1}$, $c_{\omega 2}$.					
Matrix-Vector Multiplication	Constitute admittance matrix \mathbf{Y} And obtain matrix \mathbf{H}_{RMNA}	Construct system matrix $ \begin{bmatrix} \mathbf{H}_{RMNA} \\ \mathbf{H}_{eqRMNA1} \\ \mathbf{H}_{eqRMNA4} \end{bmatrix} $				

