

RTDS User Spotlight Series – September 2020

Demonstration of Partially and Fully Selective Protection for Multiterminal HVDC Systems

Geraint Chaffey, KU Leuven and Md. Habib Rahman, The National HVDC Centre

Geraint Chaffey KU Leuven, Belgium

Postdoctoral Research

geraint.chaffey@kuleuven.be

KU LEUVEN

• EXPERIENCE

- Postdoctoral researcher at KU Leuven since 2017.
- PhD in HVDC protection: 'The impact of fault blocking converters on HVDC protection' (Imperial College London, UK).
- Research interests in HVDC protection systems, functional testing of protection systems (towards industrialisation of HVDC protection).
- Active in Cigré, IEEE, IEC.

(F)

• PROJECT ROLE

- Design of protection systems
 - Developing functional tests for HVDC protection IEDs
 - Protection system design, including case studies on South West Link and Hansa Power Bridge DC connection and the Caithness Moray Shetland system

Demonstration of protection systems

- Design, specification, modelling and testing for device level and system level testing in partially and fully selective protection strategies
- Harmonisation towards standardisation
 - Towards harmonisation in HVDC protection topics
 - · Reporting of protection system harmonisation activity

The PROMOTioN Project

Progress on Meshed Offshore HVDC Transmission Networks

Enabling the North Sea power house

- Develop interoperable & reliable HVDC network protection
- Work towards technology interoperability & standardisation
- Recommendations for EU regulatory & financial framework
- Deployment plan & Roadmap for implementation up to 2050
- Full scale technology demonstrations of:
 - HVDC control & protection systems
 - Converter harmonic model validation
 - HVDC gas insulated switchgear
 - HVDC circuit breakers

The PROMOTioN Project - Consortium

PROMOTioN – Progress on Meshed HVDC Offshore Transmission Networks

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 691714.

The PROMOTioN Project – Technology Demonstrators

HVDC network control

MMC test bench RWTH Aachen Aachen, Germany

HVDC network protection

Multi-terminal test centre SHE Transmission Glasgow, UK

HVDC circuit breakers

KEMA High Power Lab DNV GL Arnhem, Netherlands

HVDC gas insulated system KEMA High Voltage Lab DNV GL Arnhem, Netherlands

Protection of HVDC networks

Research and industry moving towards MTDC with DC-side protection

Wide range of recent protection developments:

- Protection system design
 - Protection strategies (and trade-offs)
 - Protection devices
- DC CB development and test
- HVDC protection algorithms and IEDs
- Some industrial systems already near reality (e.g. Zhangbei).

Mitsubishi Electric / DNV-GL / PROMOTioN DCCB testing 2017

HVDC Protection IEDs

Protection IEDs (sometimes known as a protection relay):

- Execute protection algorithms
- Order protection/control action (typical: trip circuit breaker)

Two prototypes:

- PROMOTioN/KTH
 - Open source design for research and education
 - 6 functional units with flexible design (algorithms may be written by user)
- Mitsubishi Electric
 - Industrial prototype on industrial control hardware
 - 6 functional units (2 poles x 3 locations)

Overall aim of work: Demonstrate HVDC protection system in industrial case study network

Changes for the Better

Habib Rahman

Simulation Engineer The National HVDC Centre (SHE Transmission) md.rahman@sse.com

• EXPERIENCE

- Simulation Engineer @ The National HVDC Centre since 2019
- MSc Sustainable Electrical Power @ The Brunel
 University

• PROJECT ROLE

• Contribution to Work package WP9 (Demonstration of DC Grid Protection): Task 9.2, 9.4, 9.5 and 9.6 since 2019

Hardware Setup: Replica(C&P) based CMS Network Model

Hardware Setup: PROMOTioN 4T Model Hardware Setup

Implementation of Model: PROMOTION 4T Model

- System Modelling
 - Converter Modelling
 - Converter Control
 - DC Circuit Breaker (DCCB)
 - Others
- DC Grid Configuration
 - AC and DC Network Model
 - HVDC Cable Model
 - IED Configuration
- DC Grid: Overview in run-time window
- Key Challenges

Implementation of Model: Converter Modelling

Open-source converter model: developed through a research project in collaboration with the University of Strathclyde, UK.

A basic circuit diagram of an MMC

+1/2 V dc

Implementation of Model: HVDC Circuit Breaker

Developed by PROMOTioN WP6 in collaboration with industrial partners. To be used for WP9 demonstration:

✓ Partially-selective DC protections strategies

- ✓ Fully-selective DC protections strategies
- ABB Hybrid DCCB
 - ✓ A rated current of 16 kA
 - ✓ 2ms operation time
- Mitsubishi Electric Mechanical DCCB

✓ A rated current of 16 kA

✓8ms operation time

- VSC Assisted Resonant Current (VARC) DCCB
 - ✓A rated current of 16 kA
 - ✓~3ms operation time

All developed DCCB models are validated against PSCAD model

Implementation of Model: Cable Modelling and Others

- HVDC Cable
 - \checkmark Cable parameters are representative of the CMS HVDC project
 - ✓Travelling wave frequency-dependent phase cable model is used
 - ✓Avoid the use of long interface Bergeron lines
 - ✓Modelled in small-time step
 - More accurate representation of electrical network resulting in more representative results from IED tests
- Simulated IED
 - ✓ Avoid complexity when testing a large network
 - ✓ Used when physical IED number is limited
- Other Components
 - ✓ Converter Transformer
 - ✓AC breaker
 - ✓ High Speed DC Switch(HSS)
 - ✓ Surge Arrestor (Type 3 Arrestor-similar arrestor model in PSCAD)

Implementation of Model: DC Grid Configuration

- Converters and DC-side electrical elements are modelled in the small-time step (~4µs)
- Small-time Step: 9 VSC Bridge Boxes are used
- AC-side circuits and converter control are modelled in the main time step (50µs)
- AC networks are modelled as a source and equivalent impedance
- Cables are modelled in the small-time step on GTFPGA units
- Hardware requirement for four-terminal network implementation:
 - ✓ 3x NovaCor chassis
 - ✓ 5x GTFPGA Units
 - ✓1x Global Bus Hub

- ✓ 1x IRC Switch
 ✓ 6x GTAO card
 ✓ 2x GTDI card
- ✓1x GTDO card

Real-time Simulation Test Setup: RSCAD Simulation run-time window

- Converter BLK-DBLK
- Automated repetitive scripts
- Fault Control
 - ✓ Cable selection
 - ✓ Fault location selection
 - ✓ Fault type selection
- Transition between SW and HW IED

Implementation of Model: key Challenges

- Cable modelling-additional hardware requirement
- Avoiding interfaces between large time-step and small time-step
- Small time-step interface between different:
 - ✓ bridge boxes
 - ✓ GTFPGA Unit
 - ✓ MOV model
- Impedance of the interface t-line ($Z_o = \sqrt{L/c}$) has to be compensate with other network elements:
 - ✓ DCCB
 - ✓ HVDC Cable
- Developed model structure varies depending on particular test cases:
 - ✓ Multi-vendor
 - ✓ different DCCB topologies
 - ✓ different IED configurations

KTH IED

Mitsubishi IED

Single and Multivendor Testing of HVDC Protection IEDs

- Aim: testing to demonstrate performance of IEDs
- Several cases already studied on 3T CMS system
- Single vendor cases:
 - Partially selective
 - Fully selective
- Multivendor cases:
 - Fully selective
- IEDs perform in 100us to 600us depending on case study and IED

System Testing of HVDC Protection

Repetitive testing evaluated with generic Key Performance Indicators (KPIs):

Testing with Converter Control Replicas

Control Replica	Protection IED	DC CB	Successful operation
ABB		SC <i>i</i> Break	
ABB		ABB	
ABB			
ABB	PROMOTION PROGRESS ON MESHED HVDC OFFSHORE TRANSMISSION NETWORKS	SC <i>i</i> Break	
ABB	PROMOTION PROGRESS ON MESHED HVDC OFFSHORE TRANSMISSION NETWORKS	ABB	
ABB	PROMOTION PROGRESS ON MESHED HVDC OFFSHORE TRANSMISSION NETWORKS		

Conclusions

We have demonstrated:

- Successful operation of HVDC protection IED prototypes
- Successful operation of HVDC CB models
- Overall protection system performance:
 - Fully selective protection
 - Primary protection
 - Backup protection (not shown in this presentation)
- Exhaustive testing of overall protection system and resulting system response
- Several example cases of high level multivendor interoperability

Public Demonstration – Partially and Fully Selective HVDC Protection

- For more information on the topic presented today, please join our (virtual) demonstration:
- Demonstration of HVDC grid protection system September 9th, 2020, 13:00 15:30 (BST)
- Registration:

https://speakeasy.eventsair.com/ssen-event/ssenpromotion/Site/Register

3:00	Event begins			
	Presentation: Welcome on behalf of PROMOTioN			
	Cornelis Plet, DNV GL, PROMOTioN Project Coordinator			
	Presentation: How to protect a DC grid?			
	Dirk van Hertem, KU Leuven, PROMOTioN Work Package 4 Leader	ſ		
	Presentation: What are DCCBs?		14.15	
	Dragan Jovcic, University of Aberdeen, PROMOTioN Work Package 6 Leader			
	Presentation: Why is this demonstration important?			┢
	Ian Cowan, The National HVDC Centre, PROMOTioN Work Package 9 Leader			
	Presentation: What is the test setup?			
	Habib Rahman, The National HVDC Centre			
	Presentation: What is the PROMOTioN IED?			
	Ilka Jahn, KTH			\vdash
	Presentation: What is the MELCO IED?	╞		┝
	Frederick Page, Mitsubishi Electric Corporation		15.30	

.15	Presentation: What will the results be? Geraint Chaffey, KU Leuven	
	Demonstration: Operation primary protection using test IEDs with test system	
	Demonstration: Operation of backup protection using test IEDs with test system	
	Demonstration: Operation of primary protection using test IEDS with replica HVDC control and protection cubicles from real project	
	Presentation: Overview of complete results Geraint Chaffey, KU Leuven	
	Summary and Q&A	
.30	End of Event	J

Final PROMOTioN Conference

• For more details on the outcomes of PROMOTioN, please follow the final conference:

https://www.promotion-offshore.net/news_events/final_conference_2020/

North Sea Grid for the European Green Deal

How to unlock Europe's Offshore Wind potential - a deployment plan for a meshed HVDC grid

Pre-Conference Sessions 08/24/20 - 09/18/20

24 AUG	PROMOTIoN @ CIGRE
2:00 - 5:30 PM	Join the PROMOTIoN Team on Channel 4 at the CIGRE 2020

Breakout Sessions

Pre-recorded presentations available Mondays each week, live Q&As with our experts every Friday

31 AUG -	Offshore HVDC Grid Technology
04 SEP	Live Q&A: Friday, 09/04/20, 10:00 AM - 12:00 PM
07 SEP -	HVDC Technology qualification
11 SEP	Live Q&A: Friday, 09/11/20, 10:00 AM - 12:00 PM
	Legal, Regulatory & Economic Aspects Live Q&A: Friday, 09/11/20, 1:00 PM - 3:00 PM
14 SEP	Meshed Offshore Grid Planning
18 SEP	Live Q&A: Friday, 09/18/20, 10:00 AM – 12:00 PM

Virtual Conference Agenda Live Event, 09/21/20

10:00 - 10:20 AM	Keynotes & Welcome Address
10:20 - 10:45 AM	Introduction to PROMOTIoN: How to approach the creation of a European offshore grid
10:45 - 11:00 AM	Feedback Round
11:00 AM - 12:00 PM	Reports from the Breakout Sessions
12:00 - 12:30 PM	Lessons from PROMOTIoN: Key steps towards a meshed HVDC offshore grid
12:30 - 1:00 PM	Lunch Break
1:00 - 2:30 PM	Live Panel Discussion: Fitting the puzzle pieces
2:30-2:45 PM	Feedbackround
2:45-3:00 PM	Wrap up & Concluding remarks

USER SPOTLIGHT SERIES BY

Co-funded by the Horizon 2020 programme of the European Union

Demonstration of Partially and Fully Selective Protection for Multiterminal HVDC Systems RTDS User Spotlight Series – September 2020

Thank you for your attention.

Protection System Demonstration <u>9th September</u> ->

PROMOTioN Final Conference <u>21st September</u> ->

000

Geraint Chaffey, KU Leuven and Md. Habib Rahman, The National HVDC Centre geraint.chaffey@kuleuven.be / Md.Rahman@sse.com