Your world in real time.

RTDS.COM

IPST 2021 AND GLOBAL PANDEMIC Carrying on in difficult times

- Congratulations to the organizing committees on convening IPST 2021!
- Hopefully we will get back to in-person meetings soon!

PAPER PRESENTATIONS

PAPER #1

Title: Development of Phase Domain Frequency Dependent Transmission Line Model on FPGA for Real-Time Digital Simulator

Presented by: Jaidai Liu

Session: Real-Time Simulators

Time: June 7 at 10:00-12:00 GMT-3

PAPER #2

Title: A Multi-Star Synchronous Machine Model for Real-Time Digital Simulation and Its Application

Presented by: Ali Banitalebi Dehkordi

Session: Renewable Energy Sources

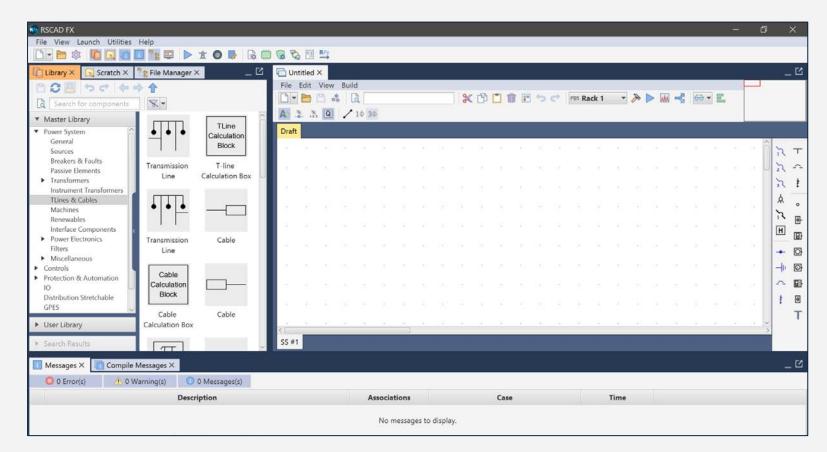
Time: June 8 at 16:00-17:40 GMT-3

NEW DEVELOPMENTS FOR THE RTDS SIMULATOR

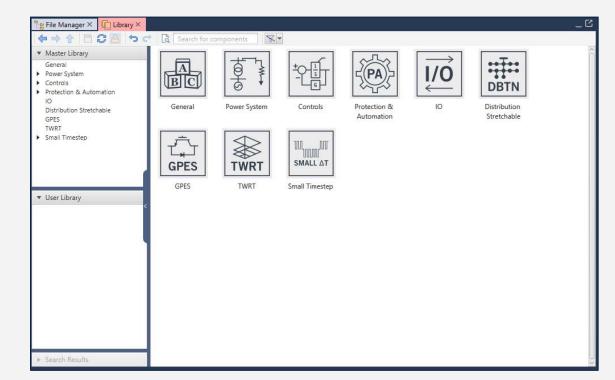
RTDS.COM

RSCAD FX

Enhancing productivity and ease of use


- Enabled by Java FX
- Launched April 2021
- Focused on updating the Draft (and FileManager) environments
- RunTime and other module updates to follow

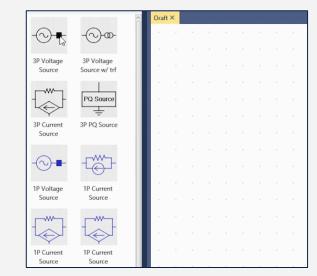
NEW AND IMPROVED GUI


- Standard windows shortcuts, drag and drop
- RSCAD FX is organized into tabs that can be resized and moved – user-configurable interface
- Easily look at multiple Draft cases at once
- Undock tabs into their own window for multiple monitors

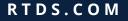
LIBRARY LAYOUT

- The library layout in RSCAD FX has been substantially revised
- Components are displayed as convenient tiles — with the actual component diagram viewable by hovering over the tile — and can be dragged onto a case
- Easy navigation and search, filtration

NEW FEATURES


Wire Mode

- Wire mode allows a user to easily add wires and/or jumpers to a case using only the mouse.
- It significantly reduces the amount of time required to connect components together.



Auto-Naming

 Automatically increments component, signal, and bus names to avoid duplicates.

BACKWARDS COMPATIBLE

RSCAD FX Conversion Utility

- Draft files will now have the file extension .dfx instead of .dft
- When trying to open a .dft file in RSCAD FX, the RSCAD FX Conversion Utility is automatically launched

Convert V5 File	— <u> </u>	
General Details	Convert Version 5 File	
Options	The selected file has been created in a previous version of RSCAD. In order to open the file, it must first be converted. The original file will not be modified in any way. Instead, a new file will be created and used in RSCAD FX. For more information, please select the "Details" page. To save the new file to a different location, and to change other settings, please select the "Options" page. When you are ready to start the conversion, press the "Convert" button below. Please note that, depending on the size of the file, this may take several minutes to complete.	

F

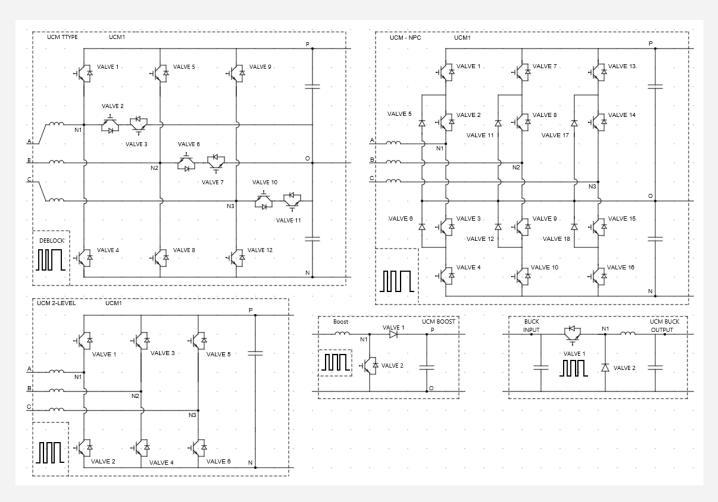
Background

F

- Demand for converter modelling and simulations with higher switching frequencies (>30.0 kHz)
- Previous average model implementation is decoupled on the DC bus, which can cause instability
- Research found modelling techniques to achieve high resolution of firing

Solution: our new Universal Converter Model (UCM)

- Universal Converter Model covering
 - o Multiple converter topologies
 - o Three different input modes
 - o Substep and Mainstep operation
 - Accurate modeling for +100 kHz switching frequencies



Multiple Converter Topologies

• 2-level,

F

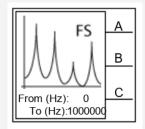
- NPC (ANPC)
- T-type
- Boost
- Buck
- Flying capacitor

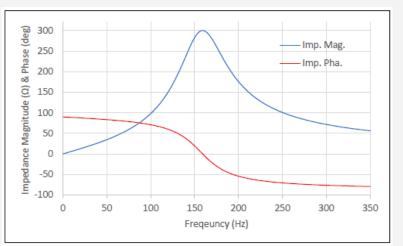
Different Input Modes

- Modulation Waveform (similar performance to existing average model no harmonics)
- Full Firing Pulse (matches performance of existing Substep resistive-switching models)
- Improved Firing (with Mean Value High Precision)
 - Provides performance similar to interpolation, but without backing up in time
 - Captures firing pulses within a timestep at high resolution to calculate how much of the timestep the switch should be "on" (producing an effective duty cycle)
 - Multiple turn-on/turn-off transitions per timestep are allowed

GTDI v2

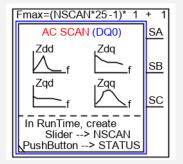
- GTDI v2 provides Improved Firing input to the UCM model for CHIL testing
- Samples every 5 ns to capture the firing pulses with high accuracy

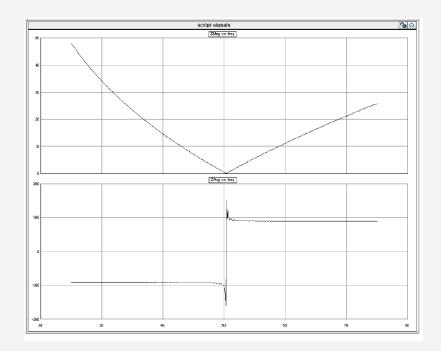

Benefits


- Very high switching frequencies possible with Improved Firing input (>100 kHz)
- No decoupling of the converter at the DC bus
 - Provides very stable simulation results
 - Good results even in Mainstep (no need to maintain very small timesteps for stability considerations)
- Proper transitioning from blocked to deblocked states UCM incorporates predictive switching technique that was in previous Substep models.
- Harmonics for Improved Firing:
 - Represents very well the characteristic harmonics (multiples of switching frequency)
 - Has minimal non-characteristic harmonics (introduced from jitter)

Frequency scan component

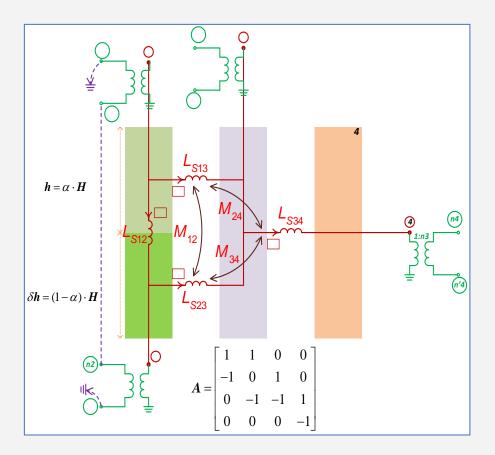
- Analytical, offline impedance scan of simulated network
- Done via Draft module prior to running simulation
- User specifies frequency range between DC and 1MHz
- Writes system impedance seen from scanning point to file
 - Lower triangular portion of phase impedance matrix
 - Pos., neg., zero sequence impedance
 - D-, q-, 0-axis impedance
 - Modified sequence quantities (PN0) good for high penetration of power electronics





Harmonic scan capability

- Component injects small-magnitude white noise to the system
- Online calculation of impedance response in frequency domain
- User specifies frequency range and interval (up to 9 kHz)
- Controlled by script in RunTime
- Outputs DQ0 or PN0 domain impedance
- Procedure available to determine Nyquist stability criterion based on eigenvalues



New faulted transformer model using "terminal duality" approach

- More realistic representation than popular star equivalent circuit
- The electric equivalent circuit from this approach corresponds to the physics of the device; phenomena such as leakage inductance, etc. can be correctly interpreted
- Represents mutual coupling between branches of equivalent and takes transverse component of leakage flux into account

MMC Valve Model Enhancements

Experience gained from real projects

- Enhancements to FPGA-based MMC valve model made to support customer testing
 - o Projects like Kun-Liu-Long multi-terminal UHVDC project provide valuable feedback
 - $_{\rm O}\,$ Mixed full- and half-bridge MMC valves
 - $_{\rm O}\,$ One terminal based on LCC technology
- Numerous internal fault options
 - o Valve to valve mid-point fault or valve mid-point to ground fault
 - Change of submodule capacitance or short across capacitor
 - o Submodule IGBT fault
 - o Reactor fault

Protection & Automation Developments

- IEC 61850 Edition 2 and IEC 61869 Enhancements
 - o New ICT tool in RSCAD FX with configurable support for all logical nodes
 - o GTNET-GSE-v7 with 4 configurable IEDs supported with new ICT tool
 - Routable GOOSE and Sampled Values
 - $_{\odot}\,$ 250 kHz Sampled Values for support of FACTS and HVDC projects
 - o Sampled value data manipulation capabilities added to test implementation robustness
 - o GOOSE Analyzer added
- PMU Test Utility enhancements
- DNP and Modbus enhancements
- Numerous new relay models added

TWRT

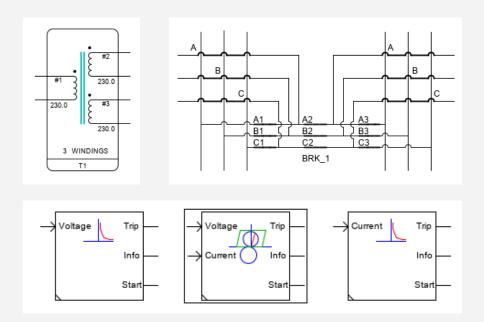
Traveling Wave Relay Testing

- GTFPGA-TWRT
 - o FPGA based model smaller network models
 - $_{\rm O}\,$ Fixed timestep of 1.54 μs
 - Phase domain frequency dependent traveling wave models supported for small timesteps

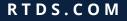
NovaCor

- $_{\rm O}$ Uses Substep environment to model network at in range of 2-3 μs
- $\circ\,$ Larger scale network models possible
- Phase domain frequency dependent traveling wave models supported for small timesteps
- Commercial testing
 - A number of customers are using RTDS to test traveling wave based relays
 - Direct connection to the relays is required since amplifiers are not able to provide the necessary frequency response

Hardware Developments


Purpose built for real time simulation

- NovaCor features
 - o UDP port for direct real time data streaming
 - Controlled shut down for high power PHIL applications
 - Snapshot feature to allow the simulation to restart from the captured state
- New hardware components
 - o GTAO v2 improved performance plus increase to 16 channels per card
 - o GTDO v2 smaller form factor
 - o GTDI v2 smaller form factor and Improved Firing support for UCM
 - o GTAI v2 more versatile input filtering options
 - o GBH v3 support for 144 NovaCor chassis
 - o IRC Switch v2 smaller form factor and support for 144 NovaCor chassis
- Support for longer cable lengths
 - o 100m for GBH and IRC cables using latest platform
 - $_{\odot}$ >300m for I/O cables



OTHER DEVELOPMENTS

- Multi-winding terminal duality transformer
- Exciter Model AC7C
- 3/2 bus connection for breaker and a half
- Single-phase relaying components
- New version of MMC generic model with multiple internal faults
- Phase-shifted and multicarrier-based PWM generators
- Improved renewable and energy storage example cases

INFORMATION RESOURCES

- Webinar and informational videos on YouTube <u>https://www.youtube.com/channel/UCCPD8f4jKs3sNzTfDi8uNVg</u>
- RTDS Knowledge Base <u>https://knowledge.rtds.com/hc/en-us</u>
- RTDS Website <u>https://www.rtds.com/</u>
- Email us at <u>marketing@rtds.com</u>

Ę

QUESTIONS ?

Thank you!

For more details, please contact marketing@rtds.com.

RTDS.COM